Machine learning assembly landscapes from particle tracking data

被引:55
作者
Long, Andrew W. [1 ]
Zhang, Jie [1 ]
Granick, Steve [2 ]
Ferguson, Andrew L. [1 ]
机构
[1] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA
[2] Ulsan Natl Inst Sci & Technol, Ctr Soft & Living Matter, Ulsan 689798, South Korea
基金
美国国家科学基金会;
关键词
NONLINEAR DIMENSIONALITY REDUCTION; FREE-ENERGY LANDSCAPES; JANUS PARTICLES; DYNAMICS; REPRESENTATION; ELECTRODE; PATHWAYS; MOTION;
D O I
10.1039/c5sm01981h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Bottom-up self-assembly offers a powerful route for the fabrication of novel structural and functional materials. Rational engineering of self-assembling systems requires understanding of the accessible aggregation states and the structural assembly pathways. In this work, we apply nonlinear machine learning to experimental particle tracking data to infer low-dimensional assembly landscapes mapping the morphology, stability, and assembly pathways of accessible aggregates as a function of experimental conditions. To the best of our knowledge, this represents the first time that collective order parameters and assembly landscapes have been inferred directly from experimental data. We apply this technique to the nonequilibrium self-assembly of metallodielectric Janus colloids in an oscillating electric field, and quantify the impact of field strength, oscillation frequency, and salt concentration on the dominant assembly pathways and terminal aggregates. This combined computational and experimental framework furnishes new understanding of self-assembling systems, and quantitatively informs rational engineering of experimental conditions to drive assembly along desired aggregation pathways.
引用
收藏
页码:8141 / 8153
页数:13
相关论文
共 71 条
[11]   DIFFUSION MAPS, REDUCTION COORDINATES, AND LOW DIMENSIONAL REPRESENTATION OF STOCHASTIC SYSTEMS [J].
Coifman, R. R. ;
Kevrekidis, I. G. ;
Lafon, S. ;
Maggioni, M. ;
Nadler, B. .
MULTISCALE MODELING & SIMULATION, 2008, 7 (02) :842-864
[12]   Graph Laplacian tomography from unknown random projections [J].
Coifman, Ronald R. ;
Shkolnisky, Yoel ;
Sigworth, Fred J. ;
Singer, Amit .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2008, 17 (10) :1891-1899
[13]   Diffusion maps [J].
Coifman, Ronald R. ;
Lafon, Stephane .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2006, 21 (01) :5-30
[14]   Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps [J].
Coifman, RR ;
Lafon, S ;
Lee, AB ;
Maggioni, M ;
Nadler, B ;
Warner, F ;
Zucker, SW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (21) :7426-7431
[15]   Methods of digital video microscopy for colloidal studies [J].
Crocker, JC ;
Grier, DG .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1996, 179 (01) :298-310
[16]   COLD DENATURATION OF AN ICOSAHEDRAL VIRUS - THE ROLE OF ENTROPY IN VIRUS ASSEMBLY [J].
DAPOIAN, AT ;
OLIVEIRA, AC ;
SILVA, JL .
BIOCHEMISTRY, 1995, 34 (08) :2672-2677
[17]   Low-dimensional, free-energy landscapes of protein-folding reactions by nonlinear dimensionality reduction [J].
Das, Payel ;
Moll, Mark ;
Stamati, Hernan ;
Kavraki, Lydia E. ;
Clementi, Cecilia .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (26) :9885-9890
[18]   SOFT MATTER [J].
DEGENNES, PG .
REVIEWS OF MODERN PHYSICS, 1992, 64 (03) :645-648
[19]   Nonlinear dimensionality reduction in molecular simulation: The diffusion map approach [J].
Ferguson, Andrew L. ;
Panagiotopoulos, Athanassios Z. ;
Kevrekidis, Ioannis G. ;
Debenedetti, Pablo G. .
CHEMICAL PHYSICS LETTERS, 2011, 509 (1-3) :1-11
[20]   An Experimental and Computational Investigation of Spontaneous Lasso Formation in Microcin J25 [J].
Ferguson, Andrew L. ;
Zhang, Siyan ;
Dikiy, Igor ;
Panagiotopoulos, Athanassios Z. ;
Debenedetti, Pablo G. ;
Link, A. James .
BIOPHYSICAL JOURNAL, 2010, 99 (09) :3056-3065