Asymptotics of Sobolev orthogonal polynomials for coherent pairs of Jacobi type

被引:5
|
作者
Meijer, HG
Piñar, MA
机构
[1] Delft Univ Technol, Fac Tech Math & Informat, NL-2600 AJ Delft, Netherlands
[2] Univ Granada, Dept Matemat Aplicada, Granada, Spain
[3] Univ Granada, Inst Carlos I Fis Teor & Computac, Granada, Spain
关键词
Jacobi polynomial; Sobolev orthogonal polynomial; coherent pair; asymptotic property;
D O I
10.1016/S0377-0427(99)00102-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let {S-n}(n) denote a sequence of polynomials orthogonal with respect to the Sobolev inner product (f,g)s = integral f(x)g(x) d psi(0)(x) + lambda integral f'(x)g'(x) d psi(1)(x) where lambda > 0 and (d psi(0), d psi(1)) is a so-called coherent pair with at least one of the measures d psi(0) or d psi(1) a Jacobi measure. We investigate the asymptotic behaviour of S-n(x), for n --> +infinity and x fixed, x is an element of C \ [ - 1, 1] as well as x is an element of (-1, 1). (C) 1999 Elsevier Science B.V. All rights reserved. MSG: 33 C 45.
引用
收藏
页码:87 / 97
页数:11
相关论文
共 50 条
  • [31] Zeros of Gegenbauer-Sobolev Orthogonal Polynomials: Beyond Coherent Pairs
    de Andrade, E. X. L.
    Bracciali, C. F.
    Ranga, A. Sri
    ACTA APPLICANDAE MATHEMATICAE, 2009, 105 (01) : 65 - 82
  • [32] Coherent pairs and Sobolev-type orthogonal polynomials on the real line: An extension to the matrix case
    Fuentes, Edinson
    Garza, Luis E.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 518 (01)
  • [33] Monotonicity and asymptotics of zeros of Sobolev type orthogonal polynomials: A general case
    Castillo, Kenier
    Mello, Mirela V.
    Rafaeli, Fernando R.
    APPLIED NUMERICAL MATHEMATICS, 2012, 62 (11) : 1663 - 1671
  • [34] Sobolev Orthogonal Polynomials: Asymptotics and Symbolic Computation
    Manas-Manas, Juan F.
    Moreno-Balcazar, Juan J.
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2022, 12 (03) : 535 - 563
  • [35] Asymptotics for Sobolev Orthogonal Polynomials for Exponential Weights
    J. S. Geronimo
    D. S. Lubinsky
    F. Marcellan
    Constructive Approximation , 2005, 22 : 309 - 346
  • [36] On the Strong Asymptotics for Sobolev Orthogonal Polynomials on the Circle
    Constructive Approximation, 2003, 19 : 299 - 307
  • [37] Asymptotics for Sobolev orthogonal polynomials for exponential weights
    Geronimo, JS
    Lubinsky, DS
    Marcellan, F
    CONSTRUCTIVE APPROXIMATION, 2005, 22 (03) : 309 - 346
  • [38] Asymptotics for varying discrete Sobolev orthogonal polynomials
    Manas-Manas, Juan F.
    Marcellan, Francisco
    Moreno-Balcazar, Juan J.
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 314 : 65 - 79
  • [39] On the strong asymptotics for Sobolev orthogonal polynomials on the circle
    Berriochoa, E
    Cachafeiro, A
    CONSTRUCTIVE APPROXIMATION, 2003, 19 (02) : 299 - 307
  • [40] Sobolev Orthogonal Polynomials on the Unit Circle and Coherent Pairs of Measures of the Second Kind
    F. Marcellán
    A. Sri Ranga
    Results in Mathematics, 2017, 71 : 1127 - 1149