Asymptotics of Sobolev orthogonal polynomials for coherent pairs of Jacobi type

被引:5
|
作者
Meijer, HG
Piñar, MA
机构
[1] Delft Univ Technol, Fac Tech Math & Informat, NL-2600 AJ Delft, Netherlands
[2] Univ Granada, Dept Matemat Aplicada, Granada, Spain
[3] Univ Granada, Inst Carlos I Fis Teor & Computac, Granada, Spain
关键词
Jacobi polynomial; Sobolev orthogonal polynomial; coherent pair; asymptotic property;
D O I
10.1016/S0377-0427(99)00102-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let {S-n}(n) denote a sequence of polynomials orthogonal with respect to the Sobolev inner product (f,g)s = integral f(x)g(x) d psi(0)(x) + lambda integral f'(x)g'(x) d psi(1)(x) where lambda > 0 and (d psi(0), d psi(1)) is a so-called coherent pair with at least one of the measures d psi(0) or d psi(1) a Jacobi measure. We investigate the asymptotic behaviour of S-n(x), for n --> +infinity and x fixed, x is an element of C \ [ - 1, 1] as well as x is an element of (-1, 1). (C) 1999 Elsevier Science B.V. All rights reserved. MSG: 33 C 45.
引用
收藏
页码:87 / 97
页数:11
相关论文
共 50 条
  • [21] Coherent pairs of moment functionals of the second kind and associated orthogonal polynomials and Sobolev orthogonal polynomials
    Suni, M. Hancco
    Marcato, G. A.
    Marcellan, F.
    Ranga, A. Sri
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 525 (01)
  • [22] Coherent pairs of measures of the second kind on the real line and Sobolev orthogonal polynomials. An application to a Jacobi case
    Marcato, G. A.
    Marcellan, F.
    Ranga, A. Sri
    Lun, Yen Chi
    STUDIES IN APPLIED MATHEMATICS, 2023, 151 (02) : 475 - 508
  • [23] Strong asymptotics for Sobolev orthogonal polynomials
    Andrei Martínez Finkelshtein
    Héctor Pijeira Cabrera
    Journal d’Analyse Mathématique, 1999, 78 : 143 - 156
  • [24] Sobolev orthogonal polynomials:: Balance and asymptotics
    Alfaro, Manuel
    Jose Moreno-Balcazar, Juan
    Pena, Ana
    Luisa Rezola, M.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (01) : 547 - 560
  • [25] Δ-Sobolev orthogonal polynomials of Meixner type:: asymptotics and limit relation
    Area, I
    Godoy, E
    Marcellán, F
    Moreno-Balcázar, JJ
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 178 (1-2) : 21 - 36
  • [26] Strong asymptotics for Sobolev orthogonal polynomials
    Finkelshtein, AM
    Cabrera, HP
    JOURNAL D ANALYSE MATHEMATIQUE, 1999, 78 (1): : 143 - 156
  • [27] Asymptotics of Polynomials Orthogonal on a Cross with a Jacobi-Type Weight
    Barhoumi, Ahmad
    Yattselev, Maxim L.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2020, 14 (01)
  • [28] Monotonicity of zeros of Jacobi-Sobolev type orthogonal polynomials
    Dimitrov, Dimitar K.
    Mello, Mirela V.
    Rafaeli, Fernando R.
    APPLIED NUMERICAL MATHEMATICS, 2010, 60 (03) : 263 - 276
  • [29] Asymptotics of Polynomials Orthogonal on a Cross with a Jacobi-Type Weight
    Ahmad Barhoumi
    Maxim L. Yattselev
    Complex Analysis and Operator Theory, 2020, 14
  • [30] Zeros of Gegenbauer-Sobolev Orthogonal Polynomials: Beyond Coherent Pairs
    E. X. L. de Andrade
    C. F. Bracciali
    A. Sri Ranga
    Acta Applicandae Mathematicae, 2009, 105 : 65 - 82