Asymptotics of Sobolev orthogonal polynomials for coherent pairs of Jacobi type

被引:5
|
作者
Meijer, HG
Piñar, MA
机构
[1] Delft Univ Technol, Fac Tech Math & Informat, NL-2600 AJ Delft, Netherlands
[2] Univ Granada, Dept Matemat Aplicada, Granada, Spain
[3] Univ Granada, Inst Carlos I Fis Teor & Computac, Granada, Spain
关键词
Jacobi polynomial; Sobolev orthogonal polynomial; coherent pair; asymptotic property;
D O I
10.1016/S0377-0427(99)00102-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let {S-n}(n) denote a sequence of polynomials orthogonal with respect to the Sobolev inner product (f,g)s = integral f(x)g(x) d psi(0)(x) + lambda integral f'(x)g'(x) d psi(1)(x) where lambda > 0 and (d psi(0), d psi(1)) is a so-called coherent pair with at least one of the measures d psi(0) or d psi(1) a Jacobi measure. We investigate the asymptotic behaviour of S-n(x), for n --> +infinity and x fixed, x is an element of C \ [ - 1, 1] as well as x is an element of (-1, 1). (C) 1999 Elsevier Science B.V. All rights reserved. MSG: 33 C 45.
引用
收藏
页码:87 / 97
页数:11
相关论文
共 50 条