An attention-based multi-task model for named entity recognition and intent analysis of Chinese online medical questions

被引:25
作者
Wu, Chaochen [1 ]
Luo, Guan [1 ]
Guo, Chao [2 ]
Ren, Yin [3 ]
Zheng, Anni [1 ]
Yang, Cheng [1 ]
机构
[1] Chinese Acad Sci, Natl Lab Pattern Recognit, Inst Automat, 95 Zhongguancun East Rd, Beijing 100190, Peoples R China
[2] CAMS & PUMC, Dept Cardiol, Fuwai Hosp, Beijing 100037, Peoples R China
[3] Univ Chinese Acad Sci, 19A Yuquan Rd, Beijing 100049, Peoples R China
关键词
Natural language processing; Deep learning; Multi-task learning; Named entity recognition; Intent analysis; Interpretability;
D O I
10.1016/j.jbi.2020.103511
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we propose an attention-based multi-task neural network model for text classification and sequence tagging and then apply it to the named entity recognition and the intent analysis of Chinese online medical questions. We found that the use of both attention and multi-task learning improved the performance of these tasks. Our method achieved superior performance in named entity recognition and intent analysis compared with other baseline methods; the method is a light-weight solution that is suitable for deployment on small servers. Furthermore, we took advantage of the model's capabilities for these two tasks and built a simple question-answering system for cardiovascular issues. Users and service providers can monitor the logic of the answers generated by this system.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] An Attention-Based Approach for Chemical Compound and Drug Named Entity Recognition
    Yang P.
    Yang Z.
    Luo L.
    Lin H.
    Wang J.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2018, 55 (07): : 1548 - 1556
  • [42] Towards Malay named entity recognition: an open-source dataset and a multi-task framework
    Fu, Yingwen
    Lin, Nankai
    Yang, Zhihe
    Jiang, Shengyi
    CONNECTION SCIENCE, 2023, 35 (01)
  • [43] A Chinese Medical Named Entity Recognition Method Based on Glyph Features
    Meng, Wei-Lun
    Guo, Jing-Feng
    Xing, Ke-Xuan
    Wei, Ning
    Wang, Qiao-Suo
    Liu, Bin
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2024, 52 (06): : 1945 - 1954
  • [44] IMPROVING BIOMEDICAL NAMED ENTITY RECOGNITION WITH A UNIFIED MULTI-TASK MRC FRAMEWORK
    Tong, Yiqi
    Zhuang, Fuzhen
    Wang, Deqing
    Ying, Haochao
    Wang, Binling
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 8332 - 8336
  • [45] Attention-Based End-to-End Named Entity Recognition from Speech
    Porjazovski, Dejan
    Leinonen, Juho
    Kurimo, Mikko
    TEXT, SPEECH, AND DIALOGUE, TSD 2021, 2021, 12848 : 469 - 480
  • [46] Named entity recognition of Chinese electronic medical records based on multifeature embedding and attention mechanism
    Gong D.-W.
    Zhang Y.-K.
    Guo Y.-N.
    Wang B.
    Fan K.-L.
    Huo Y.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2021, 43 (09): : 1190 - 1196
  • [47] Combined Attention Mechanism for Named Entity Recognition in Chinese Electronic Medical Records
    Li, Luqi
    Hou, Li
    2019 IEEE INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI), 2019, : 476 - 477
  • [48] Orthogonal channel attention-based multi-task learning for multi-view facial expression recognition
    Chen, Jingying
    Yang, Lei
    Tan, Lei
    Xu, Ruyi
    PATTERN RECOGNITION, 2022, 129
  • [49] Joint Cross-document Information for Named Entity Recognition with Multi-task Learning
    Wang, Dongsheng
    Fan, Hongjie
    Liu, Junfei
    2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 1146 - 1150
  • [50] An imConvNet-based deep learning model for Chinese medical named entity recognition
    Zheng, Yuchen
    Han, Zhenggong
    Cai, Yimin
    Duan, Xubo
    Sun, Jiangling
    Yang, Wei
    Huang, Haisong
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2022, 22 (01)