Geometry dependence of the sign problem in quantum Monte Carlo simulations

被引:73
作者
Iglovikov, V. I. [1 ]
Khatami, E. [2 ]
Scalettar, R. T. [1 ]
机构
[1] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA
[2] San Jose State Univ, Dept Phys & Astron, San Jose, CA 95192 USA
关键词
2-DIMENSIONAL HUBBARD-MODEL; FERMION SYSTEMS; CRITICAL EXPONENTS; ELECTRON-SYSTEMS; NUMERICAL-SIMULATION; INSULATOR-TRANSITION; ANTIFERROMAGNETISM; DIMENSIONS; METALS; CAV4O9;
D O I
10.1103/PhysRevB.92.045110
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The sign problem is the fundamental limitation to quantum Monte Carlo simulations of the statistical mechanics of interacting fermions. Determinant quantum Monte Carlo (DQMC) is one of the leading methods to study lattice fermions, such as the Hubbard Hamiltonian, which describe strongly correlated phenomena including magnetism, metal-insulator transitions, and possibly exotic superconductivity. Here, we provide a comprehensive dataset on the geometry dependence of the DQMC sign problem for different densities, interaction strengths, temperatures, and spatial lattice sizes. We supplement these data with several observations concerning general trends in the data, including the dependence on spatial volume and how this can be probed by examining decoupled clusters, the scaling of the sign in the vicinity of a particle-hole symmetric point, and the correlation between the total sign and the signs for the individual spin species.
引用
收藏
页数:13
相关论文
共 66 条
  • [51] ANTIFERROMAGNETIC, CHARGE-TRANSFER, AND PAIRING CORRELATIONS IN THE 3-BAND HUBBARD-MODEL
    SCALETTAR, RT
    SCALAPINO, DJ
    SUGAR, RL
    WHITE, SR
    [J]. PHYSICAL REVIEW B, 1991, 44 (02): : 770 - 781
  • [52] A NOVEL TECHNIQUE FOR THE SIMULATION OF INTERACTING FERMION SYSTEMS
    SORELLA, S
    BARONI, S
    CAR, R
    PARRINELLO, M
    [J]. EUROPHYSICS LETTERS, 1989, 8 (07): : 663 - 668
  • [53] RELATIONSHIP BETWEEN D-DIMENSIONAL QUANTAL SPIN SYSTEMS AND (D+1)-DIMENSIONAL ISING SYSTEMS - EQUIVALENCE, CRITICAL EXPONENTS AND SYSTEMATIC APPROXIMANTS OF PARTITION-FUNCTION AND SPIN CORRELATIONS
    SUZUKI, M
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1976, 56 (05): : 1454 - 1469
  • [54] SPIN GAP BEHAVIOR OF S=1/2 QUASI-2-DIMENSIONAL SYSTEM CAV4O9
    TANIGUCHI, S
    NISHIKAWA, T
    YASUI, Y
    KOBAYASHI, Y
    SATO, M
    NISHIOKA, T
    KONTANI, M
    SANO, K
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1995, 64 (08) : 2758 - 2761
  • [55] Advancing Large Scale Many-Body QMC Simulations on GPU Accelerated Multicore Systems
    Tomas, Andres
    Chang, Chia-Chen
    Scalettar, Richard
    Bai, Zhaojun
    [J]. 2012 IEEE 26TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM (IPDPS), 2012, : 308 - 319
  • [56] Trotter H. F., 1959, Proceedings of the American Mathematical Society, V10, P545, DOI [10.1090/S0002-9939-1959-0108732-6, 10.1090/s0002-9939-1959-0108732-6]
  • [57] Computational complexity and fundamental limitations to fermionic quantum monte carlo simulations
    Troyer, M
    Wiese, UJ
    [J]. PHYSICAL REVIEW LETTERS, 2005, 94 (17)
  • [58] Phase diagram of depleted Heisenberg model for CaV4O9
    Troyer, M
    Kontani, H
    Ueda, K
    [J]. PHYSICAL REVIEW LETTERS, 1996, 76 (20) : 3822 - 3825
  • [59] Optimal inhomogeneity for superconductivity:: Finite-size studies
    Tsai, Wei-Feng
    Yao, Hong
    Laeuchli, Andreas
    Kivelson, Steven A.
    [J]. PHYSICAL REVIEW B, 2008, 77 (21):
  • [60] Quantum Monte Carlo study of the two-dimensional fermion Hubbard model
    Varney, C. N.
    Lee, C. -R.
    Bai, Z. J.
    Chiesa, S.
    Jarrell, M.
    Scalettar, R. T.
    [J]. PHYSICAL REVIEW B, 2009, 80 (07):