Stabilisation effects of superparamagnetic nanoparticles on clustering in nanocomposite microparticles and on magnetic behaviour

被引:26
作者
Mandel, K. [1 ,2 ]
Hutter, F. [1 ]
Gellermann, C. [1 ]
Sextl, G. [1 ,2 ]
机构
[1] Fraunhofer Inst Silicate Res, ISC, D-97082 Wurzburg, Germany
[2] Univ Wurzburg, Chair Chem Technol Mat Synth, D-97070 Wurzburg, Germany
关键词
Nanoparticle stabilization; Nanocomposite; Superparamagnetism; Blocking temperature; Zero field cooled/field cooled measurement; SILICA-NANOPARTICLES; FE3O4; NANOPARTICLES; IRON PARTICLES; MATRIX; RELAXATION; SURFACE; NANOCRYSTALS; SEPARATION;
D O I
10.1016/j.jmmm.2012.11.053
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Superparamagnetic nanoparticles of magnetite were coprecipitated from iron salts, dispersed with nitric acid and stabilised either by lactic acid (LA) or by a polycarboxylate-ether polymer (MELPERS4343, MP). The differently stabilised nanoparticles were incorporated into a silica matrix to form nanocomposite microparticles. The silica matrix was prepared either from tetraethylorthosilicate (TEOS) or from an aqueous sodium silicate (water glass) solution. Stabilisation of nanoparticles had a crucial influence on microparticle texture and nanoparticle distribution in the silica matrix. Magnetic measurements in combination with transmission electron microscopy (TEM) investigations suggest a uniform magnetic interaction of nanoparticles in case of LA stabilisation and magnetically interacting nanoparticle clusters of different sizes in case of MP stabilisation. Splitting of blocking temperature (T-B) and irreversible temperature (T-ir) in zero field cooled (ZFC) and field cooled (FC) measurements is discussed in terms of nanoparticle clustering. (C) 2012 Elsevier B.V. rights reserved.
引用
收藏
页码:269 / 275
页数:7
相关论文
共 36 条
[1]  
[Anonymous], 1959, Superparamagnetism. J. Appl. Phys., DOI [DOI 10.1063/1.1735100, DOI 10.1063/1.2185850, 10.1063/1.2185850]
[2]   Finite-size effects in fine particles: magnetic and transport properties [J].
Batlle, X ;
Labarta, A .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2002, 35 (06) :R15-R42
[3]   Preparation of functional magnetic nanocomposites and hybrid materials: recent progress and future directions [J].
Behrens, Silke .
NANOSCALE, 2011, 3 (03) :877-892
[4]   Synthesis, characterisation and application of silica-magnetite nanocomposites [J].
Bruce, IJ ;
Taylor, J ;
Todd, M ;
Davies, MJ ;
Borioni, E ;
Sangregorio, C ;
Sen, T .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2004, 284 :145-160
[5]   Green synthesis of soya bean sprouts-mediated superparamagnetic Fe3O4 nanoparticles [J].
Cai, Yan ;
Shen, Yuhua ;
Xie, Anjian ;
Li, Shikuo ;
Wang, Xiufang .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2010, 322 (19) :2938-2943
[6]   Magnetic coupling mechanisms in particle/thin film composite systems [J].
Confalonieri, Giovanni A. Badini ;
Szary, Philipp ;
Mishra, Durgamadhab ;
Benitez, Maria J. ;
Feyen, Mathias ;
Lu, An Hui ;
Agudo, Leonardo ;
Eggeler, Gunther ;
Petracic, Oleg ;
Zabel, Hartmut .
BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2010, 1 :101-107
[7]   Nanostructure and magnetic properties of CoNi-alloy-based nanoparticles dispersed in a silica matrix [J].
de Julián, C ;
Sangregorio, C ;
Mattei, G ;
Battaglin, G ;
Cattaruzza, E ;
Gonella, F ;
Lo Russo, S ;
D'Orazio, F ;
Lucari, F ;
De, G ;
Gatteschi, D ;
Mazzoldi, P .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2001, 226 :1912-1914
[8]   MAGNETIC-PROPERTIES OF ULTRAFINE IRON PARTICLES [J].
GANGOPADHYAY, S ;
HADJIPANAYIS, GC ;
DALE, B ;
SORENSEN, CM ;
KLABUNDE, KJ ;
PAPAEFTHYMIOU, V ;
KOSTIKAS, A .
PHYSICAL REVIEW B, 1992, 45 (17) :9778-9787
[9]   Magnetic nanocomposites based on hydrogenated epoxy resin [J].
Gonzalez, Maria ;
Martin-Fabiani, Ignacio ;
Baselga, Juan ;
Pozuelo, Javier .
MATERIALS CHEMISTRY AND PHYSICS, 2012, 132 (2-3) :618-624
[10]   Magnetite nanoparticles embedded in biodegradable porous silicon [J].
Granitzer, P. ;
Rumpf, K. ;
Roca, A. G. ;
Morales, M. P. ;
Poelt, P. ;
Albu, M. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2010, 322 (9-12) :1343-1346