Competing risks analysis for discrete time-to-event data

被引:22
作者
Schmid, Matthias [1 ]
Berger, Moritz [1 ]
机构
[1] Univ Bonn, Inst Med Biometry Informat & Epidemiol, Fac Med, D-53127 Bonn, Germany
关键词
cause-specific hazards model; competing events; cumulative incidence function; discrete time-to-event analysis; subdistribution hazard model; SURVIVAL ANALYSIS; CUMULATIVE INCIDENCE; MODEL; REGRESSION; DURATION; HAZARD; SUBDISTRIBUTION; UNEMPLOYMENT; INFERENCE; TUTORIAL;
D O I
10.1002/wics.1529
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article presents an overview of statistical methods for the analysis of discrete failure times with competing events. We describe the most commonly used modeling approaches for this type of data, including discrete versions of the cause-specific hazards model and the subdistribution hazard model. In addition to discussing the characteristics of these methods, we present approaches to nonparametric estimation and model validation. Our literature review suggests that discrete competing-risks analysis has gained substantial interest in the research community and is used regularly in econometrics, biostatistics, and educational research.
引用
收藏
页数:17
相关论文
共 60 条
[1]  
Allison P., 1984, Event history analysis: Regression for longitudinal event data
[2]  
Andersen P. K., 1993, Statistical models based on counting processes, Springer Series in Statistics, DOI [10.1007/978-1-4612-4348-9, DOI 10.1007/978-1-4612-4348-9]
[3]   A Tutorial on Multilevel Survival Analysis: Methods, Models and Applications [J].
Austin, Peter C. .
INTERNATIONAL STATISTICAL REVIEW, 2017, 85 (02) :185-203
[4]   Using a Longitudinal Model to Estimate the Effect of Methicillin-resistant Staphylococcus aureus Infection on Length of Stay in an Intensive Care Unit [J].
Barnett, Adrian G. ;
Batra, Rahul ;
Graves, Nicholas ;
Edgeworth, Jonathan ;
Robotham, Julie ;
Cooper, Ben .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2009, 170 (09) :1186-1194
[5]  
Berger M., 2020, ARXIV200111240STATME
[6]   A classification tree approach for the modeling of competing risks in discrete time [J].
Berger, Moritz ;
Welchowski, Thomas ;
Schmitz-Valckenberg, Steffen ;
Schmid, Matthias .
ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2019, 13 (04) :965-990
[7]   Subdistribution hazard models for competing risks in discrete time [J].
Berger, Moritz ;
Schmid, Matthias ;
Welchowski, Thomas ;
Schmitz-Valckenberg, Steffen ;
Beyersmann, Jan .
BIOSTATISTICS, 2020, 21 (03) :449-466
[8]   Semiparametric regression for discrete time-to-event data [J].
Berger, Moritz ;
Schmid, Matthias .
STATISTICAL MODELLING, 2018, 18 (3-4) :322-345
[9]  
Beyersmann J., 2011, COMPETING RISKS MULT
[10]   Florence Nightingale, William Farr and competing risks [J].
Beyersmann, Jan ;
Schrade, Christine .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2017, 180 (01) :285-293