ON THE EXISTENCE OF POSITIVE SOLUTIONS OF A NONLINEAR q-DIFFERENCE EQUATION

被引:0
作者
Hassan, H. A. [1 ]
El-Shahed, Moustafa [2 ]
Mansour, Z. S. [3 ]
机构
[1] PAAET, Fac Basic Educ, Dept Math, Shamiya, Kuwait
[2] Coll Educ, Qasssim Unizah, Saudi Arabia
[3] King Saudi Univ, Fac Sci, Dept Math, Riyadh 11451, Saudi Arabia
来源
FIXED POINT THEORY | 2012年 / 13卷 / 02期
关键词
Boundary-value problem; q-difference equation; Green's function; Krasnoselskii's fixed-point theorem; BOUNDARY-VALUE PROBLEM;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with a boundary value problem of the nonlinear q-difference equation - D(q)(2)u(t) = f(t, u(t)), with some boundary conditions. Under certain conditions on f, the existence of positive solutions is obtained by applying a fixed point theorem in cones.
引用
收藏
页码:517 / 526
页数:10
相关论文
共 19 条
[1]  
Abu Risha MH, 2007, Z ANAL ANWEND, V26, P481
[2]   Twin nonnegative solutions for higher-order boundary value problems [J].
Agarwal, RP ;
O'Regan, D ;
Lakshmikantham, V .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 43 (01) :61-73
[3]  
[Anonymous], 1985, NONLINEAR FUNCTIONAL
[4]  
Berger A., 1977, NONLINEARITY FUNCTIO
[5]   General Lidstone problems: Multiplicity and symmetry of solutions [J].
Davis, JM ;
Henderson, J ;
Wong, PJY .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 251 (02) :527-548
[7]  
El-Shahed M, 2010, P AM MATH SOC, V138, P1733
[8]   Positive solutions of nonlinear functional difference equations [J].
Eloe, PW ;
Raffoul, Y ;
Reid, DT ;
Yin, KC .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2001, 42 (3-5) :639-646
[9]   ON THE EXISTENCE OF POSITIVE SOLUTIONS OF ORDINARY DIFFERENTIAL-EQUATIONS [J].
ERBE, LH ;
WANG, HY .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 120 (03) :743-748
[10]  
Guo D., 1988, NONLINEAR PROBLEMS A