Numerical solutions of the nonlinear fuzzy Hammerstein-Volterra delay integral equations

被引:27
作者
Bica, Alexandru Mihai [1 ]
Popescu, Constantin [1 ]
机构
[1] Univ Oradea, Dept Math & Informat, Oradea 410087, Romania
关键词
Fuzzy number; Fuzzy Hammerstein-Volterra delay integral equation; Numerical method; Mathematical model in epidemiology; RUNGE-KUTTA METHODS; DIFFERENTIAL-EQUATIONS; VALUED FUNCTIONS; CAUCHY-PROBLEM; 2ND KIND; EXISTENCE; COLLOCATION; UNIQUENESS; STABILITY; THEOREM;
D O I
10.1016/j.ins.2012.10.022
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, an iterative numerical method that solves nonlinear fuzzy Hammerstein-Volterra integral equations with constant delay is developed. By using the error estimates, a practical stopping criterion of the algorithm is obtained. The convergence and the numerical stability of the method is proved and its accuracy is illustrated on three numerical examples. The study of this integral equation is important because it has as a particular case the fuzzy variant of a mathematical model from epidemiology. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:236 / 255
页数:20
相关论文
共 76 条
[1]   Numerical method for solving linear Fredholm fuzzy integral equations of the second kind [J].
Abbasbandy, S. ;
Babolian, E. ;
Alavi, M. .
CHAOS SOLITONS & FRACTALS, 2007, 31 (01) :138-146
[2]   The Adomian decomposition method applied to the Fuzzy system of Fredholm integral equations of the second kind [J].
Abbasbandy, S ;
Allahviranloo, T .
INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2006, 14 (01) :101-110
[3]  
Ahmadi M. Barkhordari, 2011, INT J IND MATH, V3, P67
[4]   Numerical solution of fuzzy Fredholm integral equations by the Lagrange interpolation based on the extension principle [J].
Araghi, M. A. Fariborzi ;
Parandin, N. .
SOFT COMPUTING, 2011, 15 (12) :2449-2456
[5]   A Computational Method for Fuzzy Volterra-Fredholm Integral Equations [J].
Attari, Hossein ;
Yazdani, Allahbakhsh .
FUZZY INFORMATION AND ENGINEERING, 2011, 3 (02) :147-156
[6]   Numerical solution of linear Fredholm fuzzy integral equations of the second kind by Adomian method [J].
Babolian, E ;
Goghary, HS ;
Abbasbandy, S .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 161 (03) :733-744
[7]   CONTINUOUS VOLTERRA-RUNGE-KUTTA METHODS FOR INTEGRAL-EQUATIONS WITH PURE DELAY [J].
BADDOUR, N ;
BRUNNER, H .
COMPUTING, 1993, 50 (03) :213-227
[8]  
Balachandran K, 2002, INDIAN J PURE AP MAT, V33, P329
[9]  
Balachandran K., 2004, J. Appl. Math. Stoch. Anal., P169
[10]  
Balachandran K., 2005, J APPL MATH STOCH AN, V2005, P333