General relativistic hydrodynamics on a moving-mesh I: static space-times

被引:7
作者
Chang, Philip [1 ]
Etienne, Zachariah B. [2 ,3 ]
机构
[1] Univ Wisconsin, Dept Phys, 3135 North Maryland Ave, Milwaukee, WI 53211 USA
[2] West Virginia Univ, Dept Phys & Astron, Morgantown, WV 26506 USA
[3] West Virginia Univ, Ctr Gravitat Waves & Cosmol, Chestnut Ridge Res Bldg, Morgantown, WV 26505 USA
基金
美国国家科学基金会; 加拿大创新基金会;
关键词
gravitational waves; hydrodynamics; methods: numerical; stars: neutron; CONSTRAINED TRANSPORT SCHEME; CODE; MHD; MAGNETOHYDRODYNAMICS; SOLVER;
D O I
10.1093/mnras/staa1532
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present the moving-mesh general relativistic hydrodynamics solver for static space-times as implemented in the code, MANGA. Our implementation builds on the architectures of MANGA and the numerical relativity PYTHON package NRPY+. We review the general algorithm to solve these equations and, in particular, detail the time-stepping; Riemann solution across moving faces; conversion between primitive and conservative variables; validation and correction of hydrodynamic variables; and mapping of the metric to a Voronoi moving-mesh grid. We present test results for the numerical integration of an unmagnetized Tolman-Oppenheimer-Volkoff star for 24 dynamical times. We demonstrate that at a resolution of 10(6) mesh generating points, the star is stable and its central density drifts downwards by 2 per cent over this time-scale. At a lower resolution, the central density drift increases in a manner consistent with the adopted second-order spatial reconstruction scheme. These results agree well with the exact solutions, and we find the error behaviour to be similar to Eulerian codes with second-order spatial reconstruction. We also demonstrate that the new code recovers the fundamental mode frequency for the same TOV star but with its initial pressure depleted by 10 per cent.
引用
收藏
页码:206 / 214
页数:9
相关论文
共 62 条
[1]   Genesis:: A high-resolution code for three-dimensional relativistic hydrodynamics [J].
Aloy, MA ;
Ibáñez, JM ;
Martí, JM ;
Müller, E .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 1999, 122 (01) :151-166
[2]   Relativistic MHD with adaptive mesh refinement [J].
Anderson, Matthew ;
Hirschmann, Eric W. ;
Liebling, Steven L. ;
Neilsen, David .
CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (22) :6503-6524
[3]   Evolving Einstein's field equations with matter: The "hydro without hydro" test [J].
Baumgarte, TW ;
Hughes, SA ;
Shapiro, SL .
PHYSICAL REVIEW D, 1999, 60 (08)
[4]  
Burns K. J., 2020, PHRVR, V2, DOI [10.1103/PhysRevResearch.2.023068, DOI 10.1103/PHYSREVRESEARCH.2.023068]
[5]   A new general relativistic magnetohydrodynamics code for dynamical spacetimes [J].
Cerda-Duran, P. ;
Font, J. A. ;
Anton, L. ;
Mueller, E. .
ASTRONOMY & ASTROPHYSICS, 2008, 492 (03) :937-953
[6]   Time-dependent radiation hydrodynamics on a moving mesh [J].
Chang, Philip ;
Davis, Shane W. ;
Jiang, Yan-Fei .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 493 (04) :5397-5407
[7]   A moving-mesh hydrodynamic solver for CHANGA [J].
Chang, Philip ;
Wadsley, James ;
Quinn, Thomas R. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 471 (03) :3577-3589
[8]   THE PIECEWISE PARABOLIC METHOD (PPM) FOR GAS-DYNAMICAL SIMULATIONS [J].
COLELLA, P ;
WOODWARD, PR .
JOURNAL OF COMPUTATIONAL PHYSICS, 1984, 54 (01) :174-201
[9]   Hyperbolic divergence cleaning for the MHD equations [J].
Dedner, A ;
Kemm, F ;
Kröner, D ;
Munz, CD ;
Schnitzer, T ;
Wesenberg, M .
JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 175 (02) :645-673
[10]   General-relativistic resistive magnetohydrodynamics in three dimensions: Formulation and tests [J].
Dionysopoulou, Kyriaki ;
Alic, Daniela ;
Palenzuela, Carlos ;
Rezzolla, Luciano ;
Giacomazzo, Bruno .
PHYSICAL REVIEW D, 2013, 88 (04)