DR5 as a reporter system to study auxin response in Populus

被引:27
作者
Chen, Yiru [1 ]
Yordanov, Yordan S. [1 ]
Ma, Cathleen [2 ]
Strauss, Steven [2 ]
Busov, Victor B. [1 ]
机构
[1] Michigan Technol Univ, Sch Forest Res & Environm Sci, Houghton, MI 49931 USA
[2] Oregon State Univ, Dept Forest Ecosyst & Soc, Corvallis, OR 97331 USA
基金
美国农业部;
关键词
Populus; Auxin; DR5; Wood formation; Phloem; Adventitious roots; STAGE-SPECIFIC MODULATION; GENE-EXPRESSION; CAMBIAL MERISTEM; INDUCIBLE GENE; WOOD FORMATION; ARABIDOPSIS; TRANSPORT; GROWTH; POPLAR; ACID;
D O I
10.1007/s00299-012-1378-x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Auxin responsive promoter DR5 reporter system is functional in Populus to monitor auxin response in tissues including leaves, roots, and stems. We described the behavior of the DR5::GUS reporter system in stably transformed Populus plants. We found several similarities with Arabidopsis, including sensitivity to native and synthetic auxins, rapid induction after treatment in a variety of tissues, and maximal responses in root tissues. There were also several important differences from Arabidopsis, including slower time to maximum response and lower induction amplitude. Young leaves and stem sections below the apex showed much higher DR5 activity than did older leaves and stems undergoing secondary growth. DR5 activity was highest in cortex, suggesting high levels of auxin concentration and/or sensitivity in this tissue. Our study shows that the DR5 reporter system is a sensitive and facile system for monitoring auxin responses and distribution at cellular resolution in poplar.
引用
收藏
页码:453 / 463
页数:11
相关论文
共 73 条
[1]   Identification of inhibitors of auxin transcriptional activation by means of chemical genetics in Arabidopsis [J].
Armstrong, JI ;
Yuan, S ;
Dale, JM ;
Tanner, VN ;
Theologis, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (41) :14978-14983
[2]   Activity-dormancy transition in the cambial meristem involves stage-specific modulation of auxin response in hybrid aspen [J].
Baba, Kyoko ;
Karlberg, Anna ;
Schmidt, Julien ;
Schrader, Jarmo ;
Hvidsten, Torgeir R. ;
Bako, Laszlo ;
Bhalerao, Rishikesh P. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (08) :3418-3423
[3]   Hormone interactions and regulation of PsPK2:GUS compared with DR5:GUS and PID:GUS in Arabidopsis thaliana [J].
Bai, Fang ;
Demason, Darleen A. .
AMERICAN JOURNAL OF BOTANY, 2008, 95 (02) :133-145
[4]   IDENTIFICATION OF THE AUXIN-RESPONSIVE ELEMENT, AUXRE, IN THE PRIMARY INDOLEACETIC ACID-INDUCIBLE GENE, PS-IAA4/5, OF PEA (PISUM-SATIVUM) [J].
BALLAS, N ;
WONG, LM ;
THEOLOGIS, A .
JOURNAL OF MOLECULAR BIOLOGY, 1993, 233 (04) :580-596
[5]   The SUR2 gene of Arabidopsis thaliana encodes the cytochrome P450CYP83B1, a modulator of auxin homeostasis [J].
Barlier, I ;
Kowalczyk, M ;
Marchant, A ;
Ljung, K ;
Bhalerao, R ;
Bennett, M ;
Sandberg, G ;
Bellini, C .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (26) :14819-14824
[6]   Auxin: The looping star in plant development [J].
Benjamins, Rene ;
Scheres, Ben .
ANNUAL REVIEW OF PLANT BIOLOGY, 2008, 59 :443-465
[7]   Local, efflux-dependent auxin gradients as a common module for plant organ formation [J].
Benková, E ;
Michniewicz, M ;
Sauer, M ;
Teichmann, T ;
Seifertová, D ;
Jürgens, G ;
Friml, J .
CELL, 2003, 115 (05) :591-602
[8]   Use of an inducible reporter gene system for the analysis of auxin distribution in the moss Physcomitrella patens [J].
Bierfreund, NM ;
Reski, R ;
Decker, EL .
PLANT CELL REPORTS, 2003, 21 (12) :1143-1152
[9]   The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots [J].
Blilou, I ;
Xu, J ;
Wildwater, M ;
Willemsen, V ;
Paponov, I ;
Friml, J ;
Heidstra, R ;
Aida, M ;
Palme, K ;
Scheres, B .
NATURE, 2005, 433 (7021) :39-44
[10]   Auxin transport promotes Arabidopsis lateral root initiation [J].
Casimiro, I ;
Marchant, A ;
Bhalerao, RP ;
Beeckman, T ;
Dhooge, S ;
Swarup, R ;
Graham, N ;
Inzé, D ;
Sandberg, G ;
Casero, PJ ;
Bennett, M .
PLANT CELL, 2001, 13 (04) :843-852