Limit theorems for critical first-passage percolation on the triangular lattice

被引:9
|
作者
Yao, Chang-Long [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Critical percolation; First-passage percolation; Scaling limit; Conformal loop ensemble; Law of large numbers; Central limit theorem; EXPONENTS;
D O I
10.1016/j.spa.2017.05.002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider (independent) first-passage percolation on the sites of the triangular lattice T embedded in C. Denote the passage time of the site v in T by t(v), and assume that P(t(v) = 0) = P(t(v) = 1) = 1/2. Denote by b(0,n) the passage time from 0 to the halfplane {v is an element of T : Re(v) >= n}, and by T(0, nu) the passage time from 0 to the nearest site to nu, where vertical bar u vertical bar = 1. We prove that as n -> infinity, b(0,n)/ log n -> 1/(2 root 3 pi) a.s., E[b(0,n)]/ log n -> 1/(2 root 3 pi) and Var[b(0,n)]/ log -> n 2/(3 root 3 pi) - 1/(2 pi(2)); T(0, nu)/ log n -> 1/(root 3 pi) in probability but not a.s., E[T (0, nu)]/ log n -> 1/(root 3 pi) and Var[T(0, nu)]/ log n -> 4/(3 root 3 pi) - 1/pi(2). This answers a question of Kesten and Zhang (1997) and improves our previous work (2014). From this result, we derive an explicit form of the central limit theorem for b(0,n) and T (0, nu). A key ingredient for the proof is the moment generating function of the conformal radii for conformal loop ensemble CLE6, given by Schramm et al. (2009). (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:445 / 460
页数:16
相关论文
共 50 条
  • [41] Coexistence in two-type first-passage percolation models
    Garet, O
    Marchand, R
    ANNALS OF APPLIED PROBABILITY, 2005, 15 (1A): : 298 - 330
  • [42] Convergence Towards an Asymptotic Shape in First-Passage Percolation on Cone-Like Subgraphs of the Integer Lattice
    Ahlberg, Daniel
    JOURNAL OF THEORETICAL PROBABILITY, 2015, 28 (01) : 198 - 222
  • [43] Divergence of shape fluctuation for general distributions in first-passage percolation
    Nakajima, Shuta
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2020, 56 (02): : 782 - 791
  • [44] ON THE NON-CONVEXITY OF THE TIME CONSTANT IN FIRST-PASSAGE PERCOLATION
    Kesten, Harry
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 1996, 1 : 1 - 6
  • [45] Convergence Towards an Asymptotic Shape in First-Passage Percolation on Cone-Like Subgraphs of the Integer Lattice
    Daniel Ahlberg
    Journal of Theoretical Probability, 2015, 28 : 198 - 222
  • [46] Lower bounds for fluctuations in first-passage percolation for general distributions
    Damron, Michael
    Hanson, Jack
    Houdre, Christian
    Xu, Chen
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2020, 56 (02): : 1336 - 1357
  • [47] First-passage percolation, semi-directed Bernoulli percolation and failure in brittle materials
    Berlyand, L
    Rintoul, MD
    Torquato, S
    JOURNAL OF STATISTICAL PHYSICS, 1998, 91 (3-4) : 603 - 623
  • [48] First-Passage Percolation, Semi-Directed Bernoulli Percolation, and Failure in Brittle Materials
    L. Berlyand
    M. D. Rintoul
    S. Torquato
    Journal of Statistical Physics, 1998, 91 : 603 - 623
  • [49] Multitype shape theorems for first passage percolation models
    Pimentel, Leandro P. R.
    ADVANCES IN APPLIED PROBABILITY, 2007, 39 (01) : 53 - 76
  • [50] FIRST-ORDER BEHAVIOR OF THE TIME CONSTANT IN BERNOULLI FIRST-PASSAGE PERCOLATION
    Basdevant, Anne-Laure
    Gouere, Jean-Baptiste
    Theret, Marie
    ANNALS OF APPLIED PROBABILITY, 2022, 32 (06): : 4535 - 4567