Accounting for uncertainty in colonisation times: a novel approach to modelling the spatio-temporal dynamics of alien invasions using distribution data

被引:23
作者
Catterall, Stephen [1 ]
Cook, Alex R. [2 ,3 ]
Marion, Glenn [1 ]
Butler, Adam [1 ]
Hulme, Philip E. [4 ]
机构
[1] Biomath & Stat Scotland, Edinburgh EH9 3JZ, Midlothian, Scotland
[2] Natl Univ Singapore, Dept Stat & Appl Probabil, Fac Sci, Singapore 117546, Singapore
[3] Duke NUS Grad Med Sch Singapore, Singapore 169857, Singapore
[4] Lincoln Univ, Bioprotect Res Ctr, Christchurch 7647, New Zealand
基金
英国工程与自然科学研究理事会;
关键词
LONG-DISTANCE DISPERSAL; SPECIES DISTRIBUTION; CLIMATE-CHANGE; HERACLEUM-MANTEGAZZIANUM; SPATIAL-DISTRIBUTION; RIPARIAN WEEDS; SPREAD; INFERENCE; SCALE;
D O I
10.1111/j.1600-0587.2011.07190.x
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
A novel, yet generic, Bayesian approach to parameter inference in a stochastic, spatio-temporal model of dispersal and colonisation is developed and applied to the invasion of a region by an alien plant species. The method requires species distribution data from multiple time points, and accounts for temporal uncertainty in colonisation times inherent in such data. Covariates, such as climate parameters, altitude and land use, which capture variation in the suitability of sites for plant colonisation, are easily incorporated into the model. The method assumes no local extinction of occupied sites and thus is primarily applicable to modelling distribution data at relatively coarse spatial resolutions of plant species whose range is expanding over time. The implementation of the model and inference algorithm are illustrated through application to British floristic atlas data for the widespread alien Heracleum mantegazzianum (giant hogweed) assessed at a 10 X 10 km resolution in 1970 and 2000. We infer key characteristics of this species, predict its future spread, and use the resulting fitted model to inform a simulation-based assessment of the methodology. Simulated distribution data are used to validate the inference algorithm. Our results suggest that the accuracy of inference is not sensitive to the number of distribution time points, requiring only that there are at least two points in time when distributions are mapped. We demonstrate the utility of the modelling approach by making future forecasts and historic hindcasts of the distribution of giant hogweed in Great Britain. Giant hogweed is one of the worst alien plants in Britain and has rapidly increased its range since 1970, yet we highlight that a further 20% of land area remains susceptible to colonisation by this species. We use the robustness of this case study to discuss the potential for modelling distribution data for other species and at different spatial scales.
引用
收藏
页码:901 / 911
页数:11
相关论文
共 49 条
[1]   Herbarium records identify the role of long-distance spread in the spatial distribution of alien plants in New Zealand [J].
Aikio, Sami ;
Duncan, Richard P. ;
Hulme, Philip E. .
JOURNAL OF BIOGEOGRAPHY, 2010, 37 (09) :1740-1751
[2]  
[Anonymous], 2021, Bayesian data analysis
[3]  
[Anonymous], BIOL INVASIONS
[4]  
[Anonymous], 1995, Markov Chain Monte Carlo in Practice
[5]   Bayesian image restoration models for combining expert knowledge on recording activity with species distribution data [J].
Bierman, Stijn M. ;
Butler, Adam ;
Marion, Glenn ;
Kuehn, Ingolf .
ECOGRAPHY, 2010, 33 (03) :451-460
[6]  
Braithwaite M. E., 2006, CHANGE BRIT FLORA 19
[7]   Why does phenology drive species distribution? [J].
Chuine, Isabelle .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2010, 365 (1555) :3149-3160
[8]   Predicting the spatial distribution of non-indigenous riparian weeds: issues of spatial scale and extent [J].
Collingham, YC ;
Wadsworth, RA ;
Huntley, B ;
Hulme, PE .
JOURNAL OF APPLIED ECOLOGY, 2000, 37 :13-27
[9]   Bayesian inference for the spatio-temporal invasion of alien species [J].
Cook, Alex ;
Marion, Glenn ;
Butler, Adam ;
Gibson, Gavin .
BULLETIN OF MATHEMATICAL BIOLOGY, 2007, 69 (06) :2005-2025
[10]   Optimal observation times in experimental epidemic processes [J].
Cook, Alex R. ;
Gibson, Gavin J. ;
Gilligan, Christopher A. .
BIOMETRICS, 2008, 64 (03) :860-868