Complementary Strategies Toward the Aqueous Processing of High-Voltage LiNi0.5Mn1.5O4 Lithium-Ion Cathodes

被引:78
作者
Kuenzel, Matthias [1 ,2 ]
Bresser, Dominic [1 ,2 ]
Diemant, Thomas [3 ]
Carvalho, Diogo Vieira [1 ,2 ]
Kim, Guk-Tae [1 ,2 ]
Behm, R. Juergen [2 ,3 ]
Passerini, Stefano [1 ,2 ]
机构
[1] Karlsruhe Inst Technol, POB 3640, D-76021 Karlsruhe, Germany
[2] HIU, Helmholtzstr 11, D-89081 Ulm, Germany
[3] Ulm Univ, Inst Surface Chem & Catalysis, Albert Einstein Allee 47, D-89081 Ulm, Germany
关键词
aqueous electrode processing; cross-linked binder; high-voltage cathode; li-ion batteries; phosphoric acid; IMPROVING CYCLIC STABILITY; MANGANESE OXIDE CATHODE; SURFACE-FILM; ELECTROLYTE; SPINEL; BATTERIES; TEMPERATURE; CELLULOSE; BINDERS; DECOMPOSITION;
D O I
10.1002/cssc.201702021
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Increasing the environmental benignity of lithium-ion batteries is one of the greatest challenges for their large-scale deployment. Toward this end, we present herein a strategy to enable the aqueous processing of high-voltage LiNi0.5Mn1.5O4 (LNMO) cathodes, which are considered highly, if not the most, promising for the realization of cobalt-free next-generation lithium-ion cathodes. Combining the addition of phosphoric acid with the cross-linking of sodium carboxymethyl cellulose by means of citric acid, aqueously processed electrodes with excellent performance are produced. The combined approach offers synergistic benefits, resulting in stable cycling performance and excellent coulombic efficiency (98.96%) in lithium-metal cells. Remarkably, this approach can be easily incorporated into standard electrode preparation processes with no additional processing step.
引用
收藏
页码:562 / 573
页数:12
相关论文
共 73 条
[1]   Preparation and electrochemical investigation of LiMn2-xMexO4 (Me:Ni, Fe, and x=0.5, 1) cathode materials for secondary lithium batteries [J].
Amine, K ;
Tukamoto, H ;
Yasuda, H ;
Fujita, Y .
JOURNAL OF POWER SOURCES, 1997, 68 (02) :604-608
[2]   Surface characterization of electrodes from high power lithium-ion batteries [J].
Andersson, AM ;
Abraham, DP ;
Haasch, R ;
MacLaren, S ;
Liu, J ;
Amine, K .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (10) :A1358-A1369
[3]  
[Anonymous], 2012, NIST XRAY PHOT SPECT
[4]   Microstructure of LiCoO2 with and without "AIPO4" nanoparticle coating:: Combined STEM and XPS studies [J].
Appapillai, Anjuli T. ;
Mansour, Azzam N. ;
Cho, Jaephil ;
Shao-Horn, Yang .
CHEMISTRY OF MATERIALS, 2007, 19 (23) :5748-5757
[5]   Use of non-conventional electrolyte salt and additives in high-voltage graphite/LiNi0.4Mn1.6O4 batteries [J].
Arbizzani, C. ;
De Giorgio, F. ;
Porcarelli, L. ;
Mastragostino, M. ;
Khomenko, V. ;
Barsukov, V. ;
Bresser, D. ;
Passerini, S. .
JOURNAL OF POWER SOURCES, 2013, 238 :17-20
[6]   On the use of vinylene carbonate (VC) electrolyte solutions for Li-ion as an additive to batteries [J].
Aurbach, D ;
Gamolsky, K ;
Markovsky, B ;
Gofer, Y ;
Schmidt, M ;
Heider, U .
ELECTROCHIMICA ACTA, 2002, 47 (09) :1423-1439
[7]  
Bresser D., 2015, WOODHEAD PUBLISHING, P125
[8]   Metal oxide surfaces and their interactions with aqueous solutions and microbial organisms [J].
Brown, GE ;
Henrich, VE ;
Casey, WH ;
Clark, DL ;
Eggleston, C ;
Felmy, A ;
Goodman, DW ;
Grätzel, M ;
Maciel, G ;
McCarthy, MI ;
Nealson, KH ;
Sverjensky, DA ;
Toney, MF ;
Zachara, JM .
CHEMICAL REVIEWS, 1999, 99 (01) :77-174
[9]   Study of styrene butadiene rubber and sodium methyl cellulose as binder for negative electrodes in lithium-ion batteries [J].
Buqa, H. ;
Holzapfel, M. ;
Krumeich, F. ;
Veit, C. ;
Novak, P. .
JOURNAL OF POWER SOURCES, 2006, 161 (01) :617-622
[10]   Thermal decomposition of LiPF6-based electrolytes for lithium-ion batteries [J].
Campion, CL ;
Li, WT ;
Lucht, BL .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (12) :A2327-A2334