Kolmogorov and linear widths of weighted Sobolev-type classes on a finite interval, II

被引:8
作者
Konovalov, VN [1 ]
Leviatan, D
机构
[1] Natl Acad Sci Ukraine, Int Math Ctr, UA-01601 Kiev, Ukraine
[2] Tel Aviv Univ, Sackler Fac Exact Sci, Sch Math Sci, IL-69978 Tel Aviv, Israel
[3] Univ S Carolina, Dept Math, IMI, Columbia, SC 29208 USA
关键词
widths of Sobolev-type classes; Kolmogorov widths; linear widths;
D O I
10.1006/jath.2001.3626
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let I be a finite interval, r is an element of N and p(t) = dist {t, partial derivativeI}, t is an element of I. Denote by Delta', W-p,alpha(r), 0 less than or equal to alpha < infinity, the class of functions x on I with the seminorm. parallel tox((r)) rho(alpha)parallel toL(p) less than or equal to 1 for which Delta(tau)(s)x, tau > 0, is nonnegative on I. We obtain two-sided estimates of the Kolmogorov widths d(n)(Delta(+)(s)W(p,alpha)(r))L-q and of the linear widths d(n)(Delta(+)(s)W(p,alpha)(r))L-lin(q), s = 0, 1,..., r + 1. (C) 2001 Academic Press.
引用
收藏
页码:266 / 297
页数:32
相关论文
共 20 条
[1]  
[Anonymous], 1947, IZVESTIYA AKAD NAU M
[2]  
Gluskin ED, 1983, Mat. Sb. (N.S.), V120, P180
[3]   APPROXIMATION NUMBERS OF SOBOLEV EMBEDDINGS [J].
HOLLIG, K .
MATHEMATISCHE ANNALEN, 1979, 242 (03) :273-281
[4]  
Ismagilov R.S., 1974, RUSSIAN MATH SURVEYS, V29, P161, DOI DOI 10.1070/RM1974V029N03ABEH001287
[5]  
Kashin B.S., 1975, USP MAT NAUK, V30, P251
[6]   DIAMETERS OF SOME FINITE-DIMENSIONAL SETS AND CLASSES OF SMOOTH FUNCTIONS [J].
KASIN, BS .
MATHEMATICS OF THE USSR-IZVESTIYA, 1977, 11 (02) :317-333
[7]   About the best convergences of functions of a given function class [J].
Kolmogoroff, A .
ANNALS OF MATHEMATICS, 1936, 37 :107-110
[8]  
KONOVALOV VN, IN PRESS KOLMOGOROV
[9]  
Maiorov V. E., 1976, USP MAT NAUK, V30, P179
[10]  
MAIOROV VE, 1986, MAT ZAMETKI, V40, P161