共 24 条
Almost-crystallographic groups as quotients of Artin braid groups
被引:6
|作者:
Goncalves, Daciberg Lima
[1
]
Guaschi, John
[2
]
Ocampo, Oscar
[3
]
机构:
[1] Univ Sao Paulo, IME, Dept Matemat, Rua Matao 1010, BR-05508090 Sao Paulo, SP, Brazil
[2] Normandie Univ, UNICAEN, UMR CNRS 6139, Lab Math Nicolas Oresme, CS 14032, F-14032 Caen 5, France
[3] Univ Fed Bahia, Dept Matemat, IME, Av Adhemar de Barros S-N, BR-40170110 Salvador, BA, Brazil
基金:
巴西圣保罗研究基金会;
关键词:
Almost-crystallographic groups;
Artin braid groups;
Lower central series quotients;
Almost-Bieberbach groups;
Torsion elements;
Conjugacy classes;
SERIES;
D O I:
10.1016/j.jalgebra.2019.01.010
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let n, k >= 3. In this paper, we analyse the quotient group B-n/Gamma(k)(P-n) of the Artin braid group B-n by the subgroup Gamma(k) (P-n) belonging to the lower central series of the Artin pure braid group P-n. We prove that it is an almost-crystallographic group. We then focus more specifically on the case k = 3. If n >= 5, and if T is an element of N is such that gcd (T, 6) = 1, we show that B-n/Gamma(3)(P-n) possesses an element of order T if and only if S-n does, and we prove that there is a one-to-one correspondence between the conjugacy classes of elements of order T in B-n/Gamma(3) (P-n) with those of elements of order Tin the symmetric group S-n. We also exhibit a presentation for the almost-crystallographic group B-n/Gamma(3)(P-n). Finally, we obtain some 4-dimensional almost-Bieberbach subgroups of B-n/Gamma(3) (P-3), we explain how to construct almost-Bieberbach subgroups of B-4/Gamma(3)(P-4) and B-3/Gamma(4)(P-3), and we exhibit explicit elements of order 5 in B-5/Gamma(3)(P-5). (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:160 / 186
页数:27
相关论文