Nanometer-scale photon confinement in topology-optimized dielectric cavities

被引:68
作者
Albrechtsen, Marcus [1 ]
Lahijani, Babak Vosoughi [1 ,2 ]
Christiansen, Rasmus Ellebaek [2 ,3 ]
Vy Thi Hoang Nguyen [4 ]
Casses, Laura Nevenka [1 ,2 ,5 ]
Hansen, Soren Engelberth [1 ,2 ]
Stenger, Nicolas [1 ,2 ,5 ]
Sigmund, Ole [2 ,3 ]
Jansen, Henri [4 ]
Mork, Jesper [1 ,2 ]
Stobbe, Soren [1 ,2 ]
机构
[1] Tech Univ Denmark, Dept Elect & Photon Engn, DTU Electro, Orsteds Plads 343, DK-2800 Lyngby, Denmark
[2] Tech Univ Denmark, NanoPhoton Ctr Nanophoton, Orsteds Plads 345A, DK-2800 Lyngby, Denmark
[3] Tech Univ Denmark, Dept Civil & Mech Engn, Nils Koppels Alle,Bldg 404, DK-2800 Lyngby, Denmark
[4] Tech Univ Denmark, DTU Nanolab, Bldg 347, DK-2800 Lyngby, Denmark
[5] Tech Univ Denmark, Ctr Nanostruct Graphene, Bldg 345C, DK-2800 Lyngby, Denmark
基金
新加坡国家研究基金会;
关键词
INVERSE DESIGN; MODE VOLUME; LIGHT; NANOCAVITY;
D O I
10.1038/s41467-022-33874-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nanotechnology enables in principle a precise mapping from design to device but relied so far on human intuition and simple optimizations. In nanophotonics, a central question is how to make devices in which the light-matter interaction strength is limited only by materials and nanofabrication. Here, we integrate measured fabrication constraints into t opology optimization, aiming for the strongest possible light-matter interaction in a compact silicon membrane, demonstrating an unprecedented photonic nanocavity with a mode volume of V similar to 3 x 10(-4) lambda(3), quality factor Q similar to 1100, and footprint 4 lambda(2) for telecom photons with a lambda similar to 1550 nm wavelength. We fabricate the cavity, which confines photons inside 8 nm silicon bridges with ultra-high aspect ratios of 30 and use near-field optical measurements to perform the first experimental demonstration of photon confinement to a single hotspot well below the diffraction limit in dielectrics. Our framework intertwines topology optimization with fabrication and thereby initiates a new paradigm of high-performance additive and subtractive manufacturing.
引用
收藏
页数:8
相关论文
共 55 条
[1]   Giga-voxel computational morphogenesis for structural design [J].
Aage, Niels ;
Andreassen, Erik ;
Lazarov, Boyan S. ;
Sigmund, Ole .
NATURE, 2017, 550 (7674) :84-+
[2]   High-Q photonic nanocavity in a two-dimensional photonic crystal [J].
Akahane, Y ;
Asano, T ;
Song, BS ;
Noda, S .
NATURE, 2003, 425 (6961) :944-947
[3]   Two regimes of confinement in photonic nanocavities: bulk confinement versus lightning rods [J].
Albrechtsen, Marcus ;
Lahijani, Babak Vosoughi ;
Stobbe, Soren .
OPTICS EXPRESS, 2022, 30 (09) :15458-15469
[4]   Guiding and confining light in void nanostructure [J].
Almeida, VR ;
Xu, QF ;
Barrios, CA ;
Lipson, M .
OPTICS LETTERS, 2004, 29 (11) :1209-1211
[5]   FIELD BEHAVIOR NEAR A DIELECTRIC WEDGE [J].
ANDERSEN, JB ;
SOLODUKHOV, VV .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1978, 26 (04) :598-602
[6]   Cavity optomechanics [J].
Aspelmeyer, Markus ;
Kippenberg, Tobias J. ;
Marquardt, Florian .
REVIEWS OF MODERN PHYSICS, 2014, 86 (04) :1391-1452
[7]   Topological insulator laser: Experiments [J].
Bandres, Miguel A. ;
Wittek, Steffen ;
Harari, Gal ;
Parto, Midya ;
Ren, Jinhan ;
Segev, Mordechai ;
Christodoulides, Demetrios N. ;
Khajavikhan, Mercedeh .
SCIENCE, 2018, 359 (6381)
[8]   Physical limits in electromagnetism [J].
Chao, Pengning ;
Strekha, Benjamin ;
Kuate Defo, Rodrick ;
Molesky, Sean ;
Rodriguez, Alejandro W. .
NATURE REVIEWS PHYSICS, 2022, 4 (08) :543-559
[9]   Self-Similar Nanocavity Design with Ultrasmall Mode Volume for Single-Photon Nonlinearities [J].
Choi, Hyeongrak ;
Heuck, Mikkel ;
Englund, Dirk .
PHYSICAL REVIEW LETTERS, 2017, 118 (22)
[10]   Compact 200 line MATLAB code for inverse design in photonics by topology optimization: tutorial [J].
Christiansen, Rasmus E. ;
Sigmund, Ole .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2021, 38 (02) :510-520