Sparse smoothing preprocessing of hyperspectral images for improved classification performance

被引:3
作者
Chen, F. [1 ]
Tang, T. F. [1 ]
Wang, K. [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Resources & Environm, Chengdu 610054, Peoples R China
基金
美国国家科学基金会;
关键词
RVM;
D O I
10.1080/2150704X.2015.1029090
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
In this article, we propose to use the L-0 gradient minimization (L-0 GM) sparse smoothing technique as an image preprocessing method for hyperspectral data classification. This method can enhance the fundamental image constituents while diminishing insignificant details in the images. We performed experiments and provided a comparative analysis on a real benchmark hyperspectral scene with two classical classifiers (k-nearest neighbour classifier and support vector machine classifier). The experimental results show that the L-0 GM smoothing is a potential preprocessing technique that can effectively improve the classification performance.
引用
收藏
页码:276 / 285
页数:10
相关论文
共 12 条
[2]  
Balakrishnan K., 2012, INT J ENG RES TECHNO, V1, P1
[3]   Mapping of several soil properties using DAIS-7915 hyperspectral scanner data - a case study over clayey soils in Israel [J].
Ben-Dor, E ;
Patkin, K ;
Banin, A ;
Karnieli, A .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2002, 23 (06) :1043-1062
[4]   RVM-based multi-class classification of remotely sensed data [J].
Foody, G. M. .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2008, 29 (06) :1817-1823
[5]   A relative evaluation of multiclass image classification by support vector machines [J].
Foody, GM ;
Mathur, A .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2004, 42 (06) :1335-1343
[6]   Evaluation of SVM, RVM and SMLR for Accurate Image Classification With Limited Ground Data [J].
Pal, Mahesh ;
Foody, Giles M. .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2012, 5 (05) :1344-1355
[7]   SCALE-SPACE AND EDGE-DETECTION USING ANISOTROPIC DIFFUSION [J].
PERONA, P ;
MALIK, J .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1990, 12 (07) :629-639
[8]  
Richards J.A., 2006, Remote Sensing Digital Image Analysis: An Introduction, Vfourth
[9]   Supervised classification of remotely sensed imagery using a modified k-NN technique [J].
Samaniego, Luis ;
Bardossy, Andras ;
Schulz, Karsten .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (07) :2112-2125
[10]   Consideration of smoothing techniques for hyperspectral remote sensing [J].
Vaiphasa, C .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2006, 60 (02) :91-99