Sparse smoothing preprocessing of hyperspectral images for improved classification performance

被引:3
作者
Chen, F. [1 ]
Tang, T. F. [1 ]
Wang, K. [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Resources & Environm, Chengdu 610054, Peoples R China
基金
美国国家科学基金会;
关键词
RVM;
D O I
10.1080/2150704X.2015.1029090
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
In this article, we propose to use the L-0 gradient minimization (L-0 GM) sparse smoothing technique as an image preprocessing method for hyperspectral data classification. This method can enhance the fundamental image constituents while diminishing insignificant details in the images. We performed experiments and provided a comparative analysis on a real benchmark hyperspectral scene with two classical classifiers (k-nearest neighbour classifier and support vector machine classifier). The experimental results show that the L-0 GM smoothing is a potential preprocessing technique that can effectively improve the classification performance.
引用
收藏
页码:276 / 285
页数:10
相关论文
共 12 条