Braided groups and quantum groupoids

被引:2
作者
Liu, G. H. [1 ]
Zhu, H. X. [2 ]
机构
[1] Southeast Univ, Dept Math, Nanjing 210096, Jiangsu, Peoples R China
[2] Univ Hasselt, Dept Math, B-3590 Diepenbeek, Belgium
关键词
quantum groupoid; weak Hopf algebra; braided group; braided Hopf algebra; HOPF-ALGEBRAS; FACE ALGEBRAS;
D O I
10.1007/s10474-011-0183-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H be a quasitriangular weak Hopf algebra. It is proved that the centralizer subalgebra of its source subalgebra in H is a braided group (or Hopf algebra in the category of left H-modules), which is cocommutative and also a left braided Lie algebra in the sense of Majid.
引用
收藏
页码:383 / 399
页数:17
相关论文
共 15 条
[1]  
[Anonymous], 1995, QUANTUM GROUPS
[2]   Weak Hopf algebras I.: Integral theory and C*-structure [J].
Böhm, G ;
Nill, F ;
Szlachányi, K .
JOURNAL OF ALGEBRA, 1999, 221 (02) :385-438
[3]  
BOHM G, 1996, LETT MATH PHYS, V35, P437
[4]   On fusion categories [J].
Etingof, P ;
Nikshych, D ;
Ostrik, V .
ANNALS OF MATHEMATICS, 2005, 162 (02) :581-642
[5]   Braided Lie algebras and bicovdriant differential calculi over co-quasitriangular Hopf algebras [J].
Gomez, X ;
Majid, S .
JOURNAL OF ALGEBRA, 2003, 261 (02) :334-388
[6]   Face algebras I - A generalization of quantum group theory [J].
Hayashi, T .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1998, 50 (02) :293-315
[7]   Face algebras and unitarity of SU(N)L-TQFT [J].
Hayashi, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 203 (01) :211-247
[8]   QUANTUM GROUP SYMMETRY OF PARTITION-FUNCTIONS OF IRF MODELS AND ITS APPLICATION TO JONES INDEX THEORY [J].
HAYASHI, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 157 (02) :331-345
[9]   TRANSMUTATION THEORY AND RANK FOR QUANTUM BRAIDED GROUPS [J].
MAJID, S .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1993, 113 :45-70
[10]   BRAIDED GROUPS AND ALGEBRAIC QUANTUM-FIELD THEORIES [J].
MAJID, S .
LETTERS IN MATHEMATICAL PHYSICS, 1991, 22 (03) :167-175