Non-equilibrium stationary states in dissipative systems

被引:0
|
作者
Farago, J [1 ]
机构
[1] Univ Paris 11, UMR 8000, LCP, F-91405 Orsay, France
关键词
fluctuation phenomena; random processes; noise; and Brownian motion; probability theory; stochastic processes; and statistics;
D O I
暂无
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider different models of stochastic dissipative equations and compute theoretically the probability distribution functions (actually the associated large deviation functions) of the time averaged injected power required to sustain a nontrivial stationary state. We discuss the results and in particular draw from our results some general features shared by these distributions in realistic dissipative systems.
引用
收藏
页码:527 / 532
页数:6
相关论文
共 50 条
  • [41] Exponential Convergence to Non-Equilibrium Stationary States in Classical Statistical Mechanics
    Luc Rey-Bellet
    Lawrence E. Thomas
    Communications in Mathematical Physics, 2002, 225 : 305 - 329
  • [42] Exponential convergence to non-equilibrium stationary states in classical statistical mechanics
    Rey-Bellet, L
    Thomas, LE
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 225 (02) : 305 - 329
  • [43] Non-equilibrium Stationary States in the Symmetric Simple Exclusion with Births and Deaths
    De Masi, Anna
    Presutti, Errico
    Tsagkarogiannis, Dimitrios
    Vares, Maria Eulalia
    JOURNAL OF STATISTICAL PHYSICS, 2012, 147 (03) : 519 - 528
  • [44] Models of fluidized granular materials: examples of non-equilibrium stationary states
    Puglisi, A
    Cecconi, F
    Vulpiani, A
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2005, 17 (24) : S2715 - S2730
  • [45] STATIONARY NON-EQUILIBRIUM STATES BY MOLECULAR-DYNAMICS - FOURIER LAW
    TENENBAUM, A
    CICCOTTI, G
    GALLICO, R
    PHYSICAL REVIEW A, 1982, 25 (05): : 2778 - 2787
  • [46] MODIFIED NAVIER-STOKES MODEL FOR NON-EQUILIBRIUM STATIONARY STATES
    GARCIACOLIN, LS
    VELASCO, RM
    PHYSICAL REVIEW A, 1982, 26 (04): : 2187 - 2195
  • [47] Dissipative superconducting state of non-equilibrium nanowires
    Chen Y.
    Lin Y.-H.
    Snyder S.D.
    Goldman A.M.
    Kamenev A.
    Nature Physics, 2014, 10 (8) : 567 - 571
  • [48] Dissipative superconducting state of non-equilibrium nanowires
    Chen, Yu
    Lin, Yen-Hsiang
    Snyder, Stephen D.
    Goldman, Allen M.
    Kamenev, Alex
    NATURE PHYSICS, 2014, 10 (08) : 567 - 571
  • [49] Monte-Carlo Approach to Stationary Non-equilibrium of Mesoscopic Systems
    Dirks, Andreas
    Pruschke, Thomas
    Han, Jong E.
    NEW MATERIALS FOR THERMOELECTRIC APPLICATIONS: THEORY AND EXPERIMENT, 2013, : 187 - 197
  • [50] Stationary states in systems with dissipative interactions
    Piasecki, J
    DYNAMICS: MODELS AND KINETIC METHODS FOR NON-EQUILIBRIUM MANY BODY SYSTEMS, 2000, 371 : 279 - 295