Protein-ligand binding with the coarse-grained Martini model

被引:133
作者
Souza, Paulo C. T. [1 ,2 ]
Thallmair, Sebastian [1 ,2 ]
Conflitti, Paolo [3 ]
Ramirez-Palacios, Carlos [1 ,2 ]
Alessandri, Riccardo [1 ,2 ]
Raniolo, Stefano [3 ]
Limongelli, Vittorio [3 ,4 ]
Marrink, Siewert J. [1 ,2 ]
机构
[1] Univ Groningen, Groningen Biomol Sci & Biotechnol Inst, Nijenborgh 7, NL-9747 AG Groningen, Netherlands
[2] Univ Groningen, Zernike Inst Adv Mat, Nijenborgh 7, NL-9747 AG Groningen, Netherlands
[3] Univ Svizzera Italiana USI, Inst Computat Sci, Fac Biomed Sci, Via G Buffi 13, CH-6900 Lugano, Switzerland
[4] Univ Naples Federico II, Dept Pharm, Via D Montesano 49, I-80131 Naples, Italy
基金
瑞士国家科学基金会;
关键词
MOLECULAR-DYNAMICS SIMULATIONS; ADENOSINE A(2A) RECEPTOR; COMPUTATIONAL DESIGN; T4; LYSOZYME; CRYSTAL-STRUCTURE; NONPOLAR CAVITY; DRUG DISCOVERY; FREE-ENERGIES; FXR; MECHANISM;
D O I
10.1038/s41467-020-17437-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The detailed understanding of the binding of small molecules to proteins is the key for the development of novel drugs or to increase the acceptance of substrates by enzymes. Nowadays, computer-aided design of protein-ligand binding is an important tool to accomplish this task. Current approaches typically rely on high-throughput docking essays or computationally expensive atomistic molecular dynamics simulations. Here, we present an approach to use the recently re-parametrized coarse-grained Martini model to perform unbiased millisecond sampling of protein-ligand interactions of small drug-like molecules. Remarkably, we achieve high accuracy without the need of any a priori knowledge of binding pockets or pathways. Our approach is applied to a range of systems from the well-characterized T4 lysozyme over members of the GPCR family and nuclear receptors to a variety of enzymes. The presented results open the way to high-throughput screening of ligand libraries or protein mutations using the coarse-grained Martini model. Computer-aided design of protein-ligand binding is important for the development of novel drugs. Here authors present an approach to use the recently re-parametrized coarse-grained Martini model to perform unbiased millisecond sampling of protein-ligand binding interactions of small drug-like molecules.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] A reactive coarse-grained model for polydisperse polymers
    Deng, Binghui
    Shi, Yunfeng
    [J]. POLYMER, 2016, 98 : 88 - 99
  • [42] Influence of Dimehylsulfoxide on Protein-Ligand Binding Affinities
    Cubrilovic, Dragana
    Zenobi, Renato
    [J]. ANALYTICAL CHEMISTRY, 2013, 85 (05) : 2724 - 2730
  • [43] A coarse-grained method to predict the open-to-closed behavior of glutamine binding protein
    Lv, Dashuai
    Gong, Weikang
    Zhang, Yue
    Liu, Yang
    Li, Chunhua
    [J]. CHEMICAL PHYSICS, 2017, 493 : 166 - 174
  • [44] Membrane-Protein Interactions in a Generic Coarse-Grained Model for Lipid Bilayers
    West, Beate
    Brown, Frank L. H.
    Schmid, Friederike
    [J]. BIOPHYSICAL JOURNAL, 2009, 96 (01) : 101 - 115
  • [45] A finite-element-based coarse-grained model for global protein vibration
    Domenico Scaramozzino
    Giuseppe Lacidogna
    Gianfranco Piana
    Alberto Carpinteri
    [J]. Meccanica, 2019, 54 : 1927 - 1940
  • [46] A finite-element-based coarse-grained model for global protein vibration
    Scaramozzino, Domenico
    Lacidogna, Giuseppe
    Piana, Gianfranco
    Carpinteri, Alberto
    [J]. MECCANICA, 2019, 54 (13) : 1927 - 1940
  • [47] COARSE-GRAINED REPRESENTATION OF PROTEIN FLEXIBILITY. FOUNDATIONS, SUCCESSES, AND SHORTCOMINGS
    Orozco, Modesto
    Orellana, Laura
    Hospital, Adam
    Naganathan, Athi N.
    Emperador, Agusti
    Carrillo, Oliver
    Gelpi, J. L.
    [J]. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY, VOL 85: COMPUTATIONAL CHEMISTRY METHODS IN STRUCTURAL BIOLOGY, 2011, 85 : 183 - 215
  • [48] Distributions of experimental protein structures on coarse-grained free energy landscapes
    Sankar, Kannan
    Liu, Jie
    Wang, Yuan
    Jernigan, Robert L.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2015, 143 (24)
  • [49] Evaluating Coarse-Grained MARTINI Force-Fields for Capturing the Ripple Phase of Lipid Membranes
    Sharma, Pradyumn
    Desikan, Rajat
    Ayappa, K. Ganapathy
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2021, 125 (24) : 6587 - 6599
  • [50] Machine learning coarse-grained potentials of protein thermodynamics
    Majewski, Maciej
    Perez, Adria
    Tholke, Philipp
    Doerr, Stefan
    Charron, Nicholas E.
    Giorgino, Toni
    Husic, Brooke E.
    Clementi, Cecilia
    Noe, Frank
    De Fabritiis, Gianni
    [J]. NATURE COMMUNICATIONS, 2023, 14 (01)