Cell-autonomous and non-cell-autonomous toxicity in polyglutamine diseases

被引:33
|
作者
Sambataro, Fabio [1 ,2 ]
Pennuto, Maria [1 ]
机构
[1] Ist Italiano Tecnol, Dept Neurosci & Brain Technol, I-16163 Genoa, Italy
[2] Ist Italiano Tecnol, Brain Ctr Social & Motor Cognit UniPr, I-43100 Parma, Italy
关键词
Polyglutamine diseases; Neurons; Skeletal and heart muscle; Glia; Spermatogenesis; Adipose tissue; Pancreas; TRANSGENIC MOUSE MODEL; ANDROGEN RECEPTOR IMMUNOREACTIVITY; CILIARY NEUROTROPHIC FACTOR; ENDOTHELIAL GROWTH-FACTOR; LATERAL TUBERAL NUCLEUS; MOTOR-NEURON DISEASE; MALE-MICE LACKING; DENTATORUBRAL-PALLIDOLUYSIAN ATROPHY; PRESYMPTOMATIC HUNTINGTONS-DISEASE; SKELETAL-MUSCLE PATHOLOGY;
D O I
10.1016/j.pneurobio.2011.10.003
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Polyglutamine diseases are neurodegenerative disorders caused by expansion of polyglutamine tracts in the coding regions of specific genes. One of the most important features of polyglutamine diseases is that, despite the widespread and in some cases ubiquitous expression of the polyglutamine proteins, specific populations of neurons degenerate in each disease. This finding has led to the idea that polyglutamine diseases are cell-autonomous diseases, in which selective neuronal dysfunction and death result from damage caused by the mutant protein within the targeted neuronal population itself. Development of animal models for conditional expression of polyglutamine proteins, along with new pharmacologic manipulation of polyglutamine protein expression and toxicity, has led to a remarkable change of the current view of polyglutamine diseases as cell-autonomous disorders. It is becoming evident that toxicity in the neighboring non-neuronal cells contributes to selective neuronal damage. This observation implies non-cell-autonomous mechanisms of neurodegeneration in polyglutamine diseases. Here, we describe cell-autonomous and non-cell-autonomous mechanisms of polyglutamine disease pathogenesis, including toxicity in neurons, skeletal muscle, glia, germinal cells, and other cell types. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:152 / 172
页数:21
相关论文
共 50 条
  • [41] Ubiquitination and cell-autonomous immunity
    Mello-Vieira, Joao
    Bopp, Tobias
    Dikic, Ivan
    CURRENT OPINION IN IMMUNOLOGY, 2023, 84
  • [42] Introduction: cell-autonomous immunity
    Howard, Jonathan C.
    MICROBES AND INFECTION, 2007, 9 (14-15) : 1633 - 1635
  • [43] Cell-autonomous and non-cell autonomous effects of neuronal BIN1 loss in vivo
    McAvoy, Kathleen M.
    Soit, Hameetha Rajamohamed
    Marsh, Galina
    Peterson, Michael
    Reynolds, Taylor L.
    Gagnon, Jake
    Geisler, Sarah
    Leach, Prescott
    Roberts, Chris
    Cahir-McFarland, Ellen
    Ransohoff, Richard M.
    Crotti, Andrea
    PLOS ONE, 2019, 14 (08):
  • [44] Mechanisms of Alpha-Synuclein Action on Neurotransmission: Cell-Autonomous and Non-Cell Autonomous Role
    Emanuele, Marco
    Chieregatti, Evelina
    BIOMOLECULES, 2015, 5 (02): : 865 - 892
  • [45] Krox-20 patterns the hindbrain through both cell autonomous and non cell-autonomous mechanisms
    Giudicelli, F
    Taillebourg, E
    Charnay, P
    Gilardi-Hebenstreit, P
    GENES & DEVELOPMENT, 2001, 15 (05) : 567 - 580
  • [46] Non-cell-autonomous cancer progression from chromosomal instability
    Li, Jun
    Hubisz, Melissa J.
    Earlie, Ethan M.
    Duran, Mercedes A.
    Hong, Christy
    Varela, Austin A.
    Lettera, Emanuele
    Deyell, Matthew
    Tavora, Bernardo
    Havel, Jonathan J.
    Phyu, Su M.
    Amin, Amit Dipak
    Budre, Karolina
    Kamiya, Erina
    Cavallo, Julie-Ann
    Garris, Christopher
    Powell, Simon
    Reis-Filho, Jorge S.
    Wen, Hannah
    Bettigole, Sarah
    Khan, Atif J.
    Izar, Benjamin
    Parkes, Eileen E.
    Laughney, Ashley M.
    Bakhoum, Samuel F.
    NATURE, 2023, 620 (7976) : 1080 - 1088
  • [47] Non-cell-autonomous cancer progression from chromosomal instability
    Jun Li
    Melissa J. Hubisz
    Ethan M. Earlie
    Mercedes A. Duran
    Christy Hong
    Austin A. Varela
    Emanuele Lettera
    Matthew Deyell
    Bernardo Tavora
    Jonathan J. Havel
    Su M. Phyu
    Amit Dipak Amin
    Karolina Budre
    Erina Kamiya
    Julie-Ann Cavallo
    Christopher Garris
    Simon Powell
    Jorge S. Reis-Filho
    Hannah Wen
    Sarah Bettigole
    Atif J. Khan
    Benjamin Izar
    Eileen E. Parkes
    Ashley M. Laughney
    Samuel F. Bakhoum
    Nature, 2023, 620 : 1080 - 1088
  • [48] Non-cell-autonomous regulation of petal initiation in Arabidopsis thaliana
    Takeda, Seiji
    Hamamura, Yuki
    Sakamoto, Tomoaki
    Kimura, Seisuke
    Aida, Mitsuhiro
    Higashiyama, Tetsuya
    DEVELOPMENT, 2022, 149 (17):
  • [49] Non-cell-autonomous cancer progression from chromosomal instability
    Li, Jun
    Hubisz, Melissa
    Earlie, Ethan
    Duran, Mercedes
    Hong, Christy
    Varela, Austin
    Lettera, Emanuele
    Deyell, Matthew
    Tavora, Bernardo
    Havel, Jonathan
    Su, Phyu
    Amin, Amit Dipak
    Budre, Karolina
    Kamiya, Erina
    Cavallo, Julie-Ann
    Garris, Christopher
    Powell, Simon
    Reis-Filho, Jorge
    Wen, Hannah
    Bettigole, Sarah
    Khan, Atif
    Izar, Benjamin
    Parkes, Eileen
    Laughney, Ashley
    Bakhoum, Samuel
    CANCER RESEARCH, 2024, 84 (06)
  • [50] Dissecting the non-cell-autonomous effects of oncogene activation on hematopoiesis
    Colleoni, C.
    Cesana, D.
    Gallina, P.
    Montini, E.
    HUMAN GENE THERAPY, 2021, 32 (19-20) : A136 - A136