Stability analysis of switched linear systems on non-uniform time domain with unstable subsystems

被引:5
作者
Taousser, F. Z. [1 ]
Defoort, M. [2 ]
Djemai, M. [2 ]
Nicaise, S. [3 ]
机构
[1] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA
[2] LAMIH UVHC UMR CNRS 8201, F-59313 Valenciennes, France
[3] LAMAV, F-59313 Valenciennes, France
关键词
Time scale; Switched systems; Stability analysis; Exponential stability; DWELL-TIME; LYAPUNOV FUNCTIONS; HYBRID SYSTEMS; STABILIZABILITY; SCALES; STABILIZATION; EQUATIONS;
D O I
10.1016/j.ifacol.2017.08.2524
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper deals with the stability analysis of a class of switched linear systems evolving on an arbitrary time domain. This class consists of a set of unstable linear continuous time and unstable linear discrete-time subsystems. Using the time scale theory, some sufficient conditions are derived to guarantee the exponential stability of this class of systems with all modes unstable. Simulation results show the effectiveness of the proposed scheme. (C) 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:14873 / 14878
页数:6
相关论文
共 36 条
[1]   Robust Stability and Stabilization of Linear Switched Systems With Dwell Time [J].
Allerhand, Liron I. ;
Shaked, Uri .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (02) :381-386
[2]  
[Anonymous], 1988, Ein Ma kettenkalkul mit Anwendung auf Zentrumsmannigfaltigkeiten
[3]   On stabilisability of nonlinear systems on time scales [J].
Bartosiewicz, Zbigniew ;
Piotrowska, Ewa .
INTERNATIONAL JOURNAL OF CONTROL, 2013, 86 (01) :139-145
[4]  
Ben Nasser B., 2016, SYSTEMS CONTROL LETT
[5]  
Bohner M., 2001, Dynamic equations on time scales: an introduction with applications, DOI DOI 10.1007/978-1-4612-0201-1
[6]  
Bohner M., 2003, Advances in Dynamic Equations on Time Scales: An Introduction with Applications, DOI DOI 10.1007/978-0-8176-8230-9
[7]   Multiple Lyapunov functions and other analysis tools for switched and hybrid systems [J].
Branicky, MS .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1998, 43 (04) :475-482
[8]   Stability analysis and control synthesis for switched systems: A switched Lyapunov function approach [J].
Daafouz, J ;
Riedinger, P ;
Iung, C .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2002, 47 (11) :1883-1887
[9]  
DaCuhna J., 2003, J COMPUT APPL MATH, V176, P381
[10]  
Davis JE, 2009, ENV HIST AMER SOUTH, P1