Checking race freedom via linear programming

被引:5
|
作者
Terauchi, Tachio [1 ]
机构
[1] Tohoku Univ, Sendai, Miyagi 980, Japan
关键词
algorithms; languages; theory; verification; fractional capabilities; linear programming;
D O I
10.1145/1379022.1375583
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present a new static analysis for race freedom and race detection. The analysis checks race freedom by reducing the problem to ( rational) linear programming. Unlike conventional static analyses for race freedom or race detection, our analysis avoids explicit computation of locksets and lock linearity/must-aliasness. Our analysis can handle a variety of synchronization idioms that more conventional approaches often have difficulties with, such as thread joining, semaphores, and signals. We achieve efficiency by utilizing modern linear programming solvers that can quickly solve large linear programming instances. This paper reports on the formal properties of the analysis and the experience with applying an implementation to real world C programs.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [21] SPT optimality (mostly) via linear programming
    Cho, Woo-Hyung
    Shmoys, David
    Henderson, Shane
    OPERATIONS RESEARCH LETTERS, 2023, 51 (01) : 99 - 104
  • [22] EXPLICIT LINEAR KERNELS VIA DYNAMIC PROGRAMMING
    Garnero, Valentin
    Paul, Christophe
    Sau, Ignasi
    Thilikos, Dimitrios M.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2015, 29 (04) : 1864 - 1894
  • [23] Harsanyi's utilitarianism via linear programming
    Mandler, M
    ECONOMICS LETTERS, 2005, 88 (01) : 85 - 90
  • [24] Optimal design of experiments via linear programming
    Burclova, Katarina
    Pazman, Andrej
    STATISTICAL PAPERS, 2016, 57 (04) : 893 - 910
  • [25] Explicit Linear Kernels via Dynamic Programming
    Garnero, Valentin
    Paul, Christophe
    Sau, Ignasi
    Thilikos, Dimitrios M.
    31ST INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2014), 2014, 25 : 312 - 324
  • [26] Mixed volume computation via linear programming
    Gao, TG
    Li, TY
    TAIWANESE JOURNAL OF MATHEMATICS, 2000, 4 (04): : 599 - 619
  • [27] Verification methods for conic linear programming problems
    Lange, Marko
    IEICE NONLINEAR THEORY AND ITS APPLICATIONS, 2020, 11 (03): : 327 - 358
  • [28] Privacy-preserving linear and nonlinear approximation via linear programming
    Fung, Glenn M.
    Mangasarian, Olvi L.
    OPTIMIZATION METHODS & SOFTWARE, 2013, 28 (01) : 207 - 216
  • [29] Relational linear programming
    Kersting, Kristian
    Mladenov, Martin
    Tokmakov, Pavel
    ARTIFICIAL INTELLIGENCE, 2017, 244 : 188 - 216
  • [30] Large scale kernel regression via linear programming
    Mangasarian, OL
    Musicant, DR
    MACHINE LEARNING, 2002, 46 (1-3) : 255 - 269