Global Weak Solutions to Compressible Navier-Stokes-Vlasov-Boltzmann Systems for Spray Dynamics

被引:5
作者
Gamba, Irene M. [1 ]
Yu, Cheng [1 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
关键词
Navier-Stokes-Vlasov-Boltzmann equations; Compressible flow; Weak solutions; 35Q35; 76D05; 82C40; 35H10; HYDRODYNAMIC LIMIT; EQUATIONS; EXISTENCE; REGULARITY; MODEL; TIME;
D O I
10.1007/s00021-020-00505-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work focus on the construction of weak solutions to a kinetic-fluid system of partial differential-integral equations modeling the evolution of particles droplets in a compressible fluid. The system is given by a coupling between the standard isentropic compressible Navier-Stokes equations for the macroscopic description of a gas fluid flow, and a Vlasov-Boltzmann type equation governing the evolution of spray droplets modeled as particles with varying radius. We establish the existence of global weak solutions with finite energy, whose density of gas satisfies the renormalized mass equation. The proof combines techniques inspired by the work of Feireisl et al. (J Math Fluid Mech 3:358-392, 2001) on the weak solutions of the compressible Navier-Stokes equations in a coupled system to the kinetic problem for the spray droplets by extending techniques of Leger and Vasseur (J Hyperbolic Differ Equ 6(1):185-206, 2009) developed for the incompressible fluid-kinetic system.
引用
收藏
页数:22
相关论文
共 29 条
[21]  
Lions P. L., 1996, OXFORD LECT SERIES M, V10
[22]   PROPAGATION OF MOMENTS AND REGULARITY FOR THE 3-DIMENSIONAL VLASOV-POISSON SYSTEM [J].
LIONS, PL ;
PERTHAME, B .
INVENTIONES MATHEMATICAE, 1991, 105 (02) :415-430
[23]   Asymptotic analysis for a Vlasov-Fokker-Planck/compressible Navier-Stokes system of equations [J].
Mellet, A. ;
Vasseur, A. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 281 (03) :573-596
[24]   Global weak solutions for a Vlasov-Fokker-Planck/Navier-Stokes system of equations [J].
Mellet, A. ;
Vasseur, A. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2007, 17 (07) :1039-1063
[25]  
O'Rourke P. J., 1981, Ph.D. thesis
[26]  
RANZ WE, 1952, CHEM ENG PROG, V48, P141
[27]  
Temam R., 1997, Navier Stokes Equations, Theory and Numerical analysis
[28]  
Williams F. A., 1985, Combustion Theory
[29]   Global weak solutions to the incompressible Navier-Stokes-Vlasov equations [J].
Yu, Cheng .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2013, 100 (02) :275-293