Global Weak Solutions to Compressible Navier-Stokes-Vlasov-Boltzmann Systems for Spray Dynamics

被引:4
作者
Gamba, Irene M. [1 ]
Yu, Cheng [1 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
关键词
Navier-Stokes-Vlasov-Boltzmann equations; Compressible flow; Weak solutions; 35Q35; 76D05; 82C40; 35H10; HYDRODYNAMIC LIMIT; EQUATIONS; EXISTENCE; REGULARITY; MODEL; TIME;
D O I
10.1007/s00021-020-00505-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work focus on the construction of weak solutions to a kinetic-fluid system of partial differential-integral equations modeling the evolution of particles droplets in a compressible fluid. The system is given by a coupling between the standard isentropic compressible Navier-Stokes equations for the macroscopic description of a gas fluid flow, and a Vlasov-Boltzmann type equation governing the evolution of spray droplets modeled as particles with varying radius. We establish the existence of global weak solutions with finite energy, whose density of gas satisfies the renormalized mass equation. The proof combines techniques inspired by the work of Feireisl et al. (J Math Fluid Mech 3:358-392, 2001) on the weak solutions of the compressible Navier-Stokes equations in a coupled system to the kinetic problem for the spray droplets by extending techniques of Leger and Vasseur (J Hyperbolic Differ Equ 6(1):185-206, 2009) developed for the incompressible fluid-kinetic system.
引用
收藏
页数:22
相关论文
共 29 条
[1]  
[Anonymous], 1998, Japan J. Indust. Appl. Math., V15, P51
[2]   Coupling Euler and Vlasov equations in the context of sprays: The local-in-time, classical solutions [J].
Baranger, C ;
Desvillettes, L .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2006, 3 (01) :1-26
[3]   ABSTRACT TIME-DEPENDENT TRANSPORT-EQUATIONS [J].
BEALS, R ;
PROTOPOPESCU, V .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1987, 121 (02) :370-405
[4]  
Boudin L, 2009, DIFFER INTEGRAL EQU, V22, P1247
[5]   DYNAMIC THEORY OF SUSPENSIONS WITH BROWNIAN EFFECTS [J].
CAFLISCH, R ;
PAPANICOLAOU, GC .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1983, 43 (04) :885-906
[6]  
Constantin P, 1989, Navier-Stokes equation
[7]   LP REGULARITY OF VELOCITY AVERAGES [J].
DIPERNA, RJ ;
LIONS, PL ;
MEYER, Y .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1991, 8 (3-4) :271-287
[8]   ORDINARY DIFFERENTIAL-EQUATIONS, TRANSPORT-THEORY AND SOBOLEV SPACES [J].
DIPERNA, RJ ;
LIONS, PL .
INVENTIONES MATHEMATICAE, 1989, 98 (03) :511-547
[9]   Existence and stability of travelling wave solutions in a kinetic model of two-phase flows [J].
Domelevo, K ;
Roquejoffre, JM .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1999, 24 (1-2) :61-108
[10]   Viscous limits for one dimensional Fokker-Planck-Burgers type systems [J].
Domelevo, K ;
Vignal, MH .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 332 (09) :863-868