A counterexample to Raikov's conjecture

被引:28
作者
Rump, Wolfgang [1 ]
机构
[1] Univ Stuttgart, Inst Algebra & Number Theory, D-70550 Stuttgart, Germany
关键词
D O I
10.1112/blms/bdn080
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Quasi-abelian categories are additive categories for which the class of all short exact sequences defines an exact structure. Such categories are ubiquitous and form a natural framework for relative homological algebra and K-theory. Higher Ext-groups also exist in categories with the formally weaker property to be semi-abelian. Raikov's conjecture states that both concepts are equivalent. We use a tilted algebra of type (6) to construct a counterexample.
引用
收藏
页码:985 / 994
页数:10
相关论文
共 31 条
  • [1] [Anonymous], 1981, LECT NOTES MATH, V903, P26
  • [2] AUSLANDER M, 1974, COMMUN ALGEBRA, V1, P177
  • [3] Bondal A, 2003, MOSC MATH J, V3, P1
  • [4] CACZACU CA, 1966, TOPOLOGIE CATEGORILL
  • [5] CRUCIANI RS, 1973, REV ROUMAINE MATH PU, V18, P105
  • [6] CRUCIANI RS, 1974, REND MAT, V7, P97
  • [7] A TORSION THEORY FOR ABELIAN CATEGORIES
    DICKSON, SE
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1966, 121 (01) : 223 - &
  • [8] Freyd P., 1965, 1966 PROC C CATEGORI, P95
  • [9] Gabriel P., 1967, CALCULUS FRACTIONS H
  • [10] GRUSON L, 1966, B SCI MATH, V90, P17