Elliptic polylogarithms and Feynman parameter integrals

被引:69
|
作者
Broedel, Johannes [1 ,2 ]
Duhr, Claude [3 ,4 ]
Dulat, Falko [5 ]
Penante, Brenda [3 ]
Tancredi, Lorenzo [3 ]
机构
[1] Humboldt Univ, Inst Math, IRIS Adlershof, Zum Grossen Windkanal 6, D-12489 Berlin, Germany
[2] Humboldt Univ, Inst Phys, IRIS Adlershof, Zum Grossen Windkanal 6, D-12489 Berlin, Germany
[3] CERN, TH Dept, 1 Esplanade Particules, CH-1211 Geneva 23, Switzerland
[4] Catholic Univ Louvain, Ctr Cosmol Particle Phys & Phenomenol CP3, B-1348 Louvain La Neuve, Belgium
[5] Stanford Univ, SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Stanford, CA 94309 USA
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2019年 / 05期
关键词
NLO Computations; QCD Phenomenology; DIFFERENTIAL-EQUATIONS; MASTER INTEGRALS; 2-LOOP; DIAGRAM;
D O I
10.1007/JHEP05(2019)120
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In this paper we study the calculation of multiloop Feynman integrals that cannot be expressed in terms of multiple polylogarithms. We show in detail how certain types of two- and three-point functions at two loops, which appear in the calculation of higher order corrections in QED, QCD and in the electroweak theory (EW), can naturally be expressed in terms of a recently introduced elliptic generalisation of multiple polylogarithms by direct integration over their Feynman parameter representation. Moreover, we show that in all examples that we considered a basis of pure Feynman integrals can be found.
引用
收藏
页数:38
相关论文
共 50 条
  • [41] Restrictions of Pfaffian systems for Feynman integrals
    Chestnov, Vsevolod
    Matsubara-Heo, Saiei J.
    Munch, Henrik J.
    Takayama, Nobuki
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (11)
  • [42] Function Theory for Multiloop Feynman Integrals
    Duhr, Claude
    ANNUAL REVIEW OF NUCLEAR AND PARTICLE SCIENCE, VOL 69, 2019, 69 : 15 - 39
  • [43] Massive Feynman integrals and electroweak corrections
    Gluza, Janusz
    Riemann, Tord
    NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS, 2015, 261 : 140 - 154
  • [44] Feynman integrals from positivity constraints
    Zeng, Mao
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (09)
  • [45] Indefinite integrals of incomplete elliptic integrals from Jacobi elliptic functions
    Conway, John T.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2017, 28 (06) : 443 - 459
  • [46] ε-factorized differential equations for two-loop non-planar triangle Feynman integrals with elliptic curves
    Jiang, Xuhang
    Wang, Xing
    Yang, Li Lin
    Zhao, Jingbang
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (09)
  • [47] Three-mass triangle integrals and single-valued polylogarithms
    Federico Chavez
    Claude Duhr
    Journal of High Energy Physics, 2012
  • [48] From infinity to four dimensions: higher residue pairings and Feynman integrals
    Mizera, Sebastian
    Pokraka, Andrzej
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (02)
  • [49] Picard-Fuchs Equations for Feynman Integrals
    Mueller-Stach, Stefan
    Weinzierl, Stefan
    Zayadeh, Raphael
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 326 (01) : 237 - 249
  • [50] Tropical Monte Carlo quadrature for Feynman integrals
    Borinsky, Michael
    ANNALES DE L INSTITUT HENRI POINCARE D, 2023, 10 (04): : 635 - 685