Elliptic polylogarithms and Feynman parameter integrals

被引:69
|
作者
Broedel, Johannes [1 ,2 ]
Duhr, Claude [3 ,4 ]
Dulat, Falko [5 ]
Penante, Brenda [3 ]
Tancredi, Lorenzo [3 ]
机构
[1] Humboldt Univ, Inst Math, IRIS Adlershof, Zum Grossen Windkanal 6, D-12489 Berlin, Germany
[2] Humboldt Univ, Inst Phys, IRIS Adlershof, Zum Grossen Windkanal 6, D-12489 Berlin, Germany
[3] CERN, TH Dept, 1 Esplanade Particules, CH-1211 Geneva 23, Switzerland
[4] Catholic Univ Louvain, Ctr Cosmol Particle Phys & Phenomenol CP3, B-1348 Louvain La Neuve, Belgium
[5] Stanford Univ, SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Stanford, CA 94309 USA
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2019年 / 05期
关键词
NLO Computations; QCD Phenomenology; DIFFERENTIAL-EQUATIONS; MASTER INTEGRALS; 2-LOOP; DIAGRAM;
D O I
10.1007/JHEP05(2019)120
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In this paper we study the calculation of multiloop Feynman integrals that cannot be expressed in terms of multiple polylogarithms. We show in detail how certain types of two- and three-point functions at two loops, which appear in the calculation of higher order corrections in QED, QCD and in the electroweak theory (EW), can naturally be expressed in terms of a recently introduced elliptic generalisation of multiple polylogarithms by direct integration over their Feynman parameter representation. Moreover, we show that in all examples that we considered a basis of pure Feynman integrals can be found.
引用
收藏
页数:38
相关论文
共 50 条
  • [1] Elliptic polylogarithms and Feynman parameter integrals
    Johannes Broedel
    Claude Duhr
    Falko Dulat
    Brenda Penante
    Lorenzo Tancredi
    Journal of High Energy Physics, 2019
  • [2] Elliptic Feynman integrals and pure functions
    Broedel, Johannes
    Duhr, Claude
    Dulat, Falko
    Penante, Brenda
    Tancredi, Lorenzo
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (01)
  • [3] Generalizations of polylogarithms for Feynman integrals
    Bogner, Christian
    17TH INTERNATIONAL WORKSHOP ON ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH (ACAT2016), 2016, 762
  • [4] Elliptic symbol calculus: from elliptic polylogarithms to iterated integrals of Eisenstein series
    Broedel, Johannes
    Duhr, Claude
    Dulat, Falko
    Penante, Brenda
    Tancredi, Lorenzo
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (08):
  • [5] Elliptic polylogarithms and iterated integrals on elliptic curves. Part I: general formalism
    Broedel, Johannes
    Duhr, Claude
    Dulat, Falko
    Tancredi, Lorenzo
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (05):
  • [6] Elliptic Feynman integrals and pure functions
    Johannes Broedel
    Claude Duhr
    Falko Dulat
    Brenda Penante
    Lorenzo Tancredi
    Journal of High Energy Physics, 2019
  • [7] Elliptic symbol calculus: from elliptic polylogarithms to iterated integrals of Eisenstein series
    Johannes Broedel
    Claude Duhr
    Falko Dulat
    Brenda Penante
    Lorenzo Tancredi
    Journal of High Energy Physics, 2018
  • [8] Iterated elliptic and hypergeometric integrals for Feynman diagrams
    Ablinger, J.
    Bluemlein, J.
    De Freitas, A.
    van Hoeij, M.
    Imamoglu, E.
    Raab, C. G.
    Radu, C. -S.
    Schneider, C.
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (06)
  • [9] Elliptic polylogarithms and iterated integrals on elliptic curves. Part I: general formalism
    Johannes Broedel
    Claude Duhr
    Falko Dulat
    Lorenzo Tancredi
    Journal of High Energy Physics, 2018
  • [10] Elliptic polylogarithms and iterated integrals on elliptic curves. II. An application to the sunrise integral
    Broedel, Johannes
    Duhr, Claude
    Dulat, Falko
    Tancredi, Lorenzo
    PHYSICAL REVIEW D, 2018, 97 (11)