Crack Surface Frictional Contact Modeling in Fractured Fiber-Reinforced Composites

被引:0
|
作者
Rodriguez-Tembleque, Luis [1 ]
Garcia-Sanchez, Felipe [2 ]
Saez, Andres [1 ]
机构
[1] Univ Seville, Escuela Tecn Super Ingn, Camino Descubrimientos S-N, Seville 41092, Spain
[2] Univ Malaga, Escuela Ingn Tias Idustriales, Doctor Ortiz Ramos S-N, E-29071 Malaga, Spain
关键词
Fiber-reinforced composites; FRP; crack face contact; friction; fracture mechanics; boundary element method; FINITE-ELEMENT-METHOD; MECHANICS ANALYSIS; FACE CONTACT; FORMULATION; ALGORITHMS; EQUATIONS; ROUGHNESS;
D O I
10.1142/S1756973718410056
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A robust boundary element numerical scheme is presented to study crack-face frictional contact in cracked fiber reinforced composite materials. The dual boundary element method is considered for modeling fracture mechanics on these materials. The formulation is based on contact operators over the augmented Lagrangian to enforce contact constraints on the crack surface. Moreover, it considers a Halpin-Tsai macro model for fiber reinforced composite materials which makes it possible to take into account the influence of micromechanical aspects such as: the fibers' orientation, the fiber's aspect ratio or the fiber's volume fraction, estimating the mechanical properties of these composite materials from the known values of the fiber and the matrix. After solving a crack face frictional contact benchmark problem, the capabilities of this methodology are illustrated by studying the influence of not only these micromechanical aspects but also crack face frictional contact conditions on a fractured carbon fiber-reinforced polymer under compression.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Strengthening of steel structures with fiber-reinforced polymer composites
    Teng, J. G.
    Yu, T.
    Fernando, D.
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2012, 78 : 131 - 143
  • [42] Cutting Processes of Natural Fiber-Reinforced Polymer Composites
    Masoud, Fathi
    Sapuan, S. M.
    Mohd Ariffin, Mohd Khairol Anuar
    Nukman, Y.
    Bayraktar, Emin
    POLYMERS, 2020, 12 (06)
  • [43] Experimental Investigation of Relaxation of Fiber-reinforced Polymer Composites
    Oskouei, Asghar Vatani
    Taleie, Shahab Mehdizad
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2010, 29 (17) : 2705 - 2718
  • [44] Advancements in Fiber-Reinforced Polymer Composites: A Comprehensive Analysis
    Dinita, Alin
    Ripeanu, Razvan George
    Ilinca, Costin Nicolae
    Cursaru, Diana
    Matei, Danuta
    Naim, Ramadan Ibrahim
    Tanase, Maria
    Portoaca, Alexandra Ileana
    POLYMERS, 2024, 16 (01)
  • [45] Prediction of elastic properties of fiber-reinforced unidirectional composites
    Chati, MK
    Mitra, AK
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 1998, 21 (03) : 235 - 244
  • [46] PET Fiber-Reinforced Engineered Geopolymer and Cementitious Composites
    Khan, Sadaqat Ullah
    Ayub, Tehmina
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2022, 34 (03)
  • [47] Finite Element Analysis of the Competition Between Crack Deflection and Penetration of Fiber-Reinforced Composites Using Virtual Crack Closure Technique
    P. F. Liu
    Y. H. Yang
    Applied Composite Materials, 2014, 21 : 759 - 771
  • [48] EFFECT OF FIBER WAVINESS ON TENSILE STRENGTH OF FLAX FIBER-REINFORCED COMPOSITES
    Piyatuchsananon, Taweesak
    Furuya, Akira
    Goda, Koichi
    20TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS, 2015,
  • [49] An Investigation of Crack Propagation in Steel Fiber-Reinforced Composite Beams
    Soto, Adam
    Tehrani, Fariborz M.
    PERIODICA POLYTECHNICA-CIVIL ENGINEERING, 2018, 62 (04): : 956 - 962
  • [50] Strong influence of a small fiber on shear stress in fiber-reinforced composites
    Lim, Mikyoung
    Yun, KiHyun
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (05) : 2402 - 2439