Coleman-Weinberg potential in p-adic field theory

被引:0
作者
Ageev, Dmitry S. [1 ]
Bagrov, Andrey A. [2 ]
Iliasov, Askar A. [3 ]
机构
[1] Russian Acad Sci, Dept Math Methods Quantum Technol, Steklov Math Inst, Gubkin Str 8, Moscow 119991, Russia
[2] Uppsala Univ, Dept Phys & Astron, Box 516, S-75120 Uppsala, Sweden
[3] Radboud Univ Nijmegen, Inst Mol & Mat, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands
来源
EUROPEAN PHYSICAL JOURNAL C | 2020年 / 80卷 / 09期
关键词
RENORMALIZATION; PARTICLES; MODELS;
D O I
10.1140/epjc/s10052-020-08442-5
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In this paper, we study lambda phi(4) scalar field theory defined on the unramified extension of p-adic numbers Q(pn). For different "space-time" dimensions n, we compute one-loop quantum corrections to the effective potential. Surprisingly, despite the unusual properties of non-Archimedean geometry, the Coleman-Weinberg potential of p-adic field theory has structure very similar to that of its real cousin. We also study two formal limits of the effective potential, p -> 1 and p -> infinity. We show that the p -> 1 limit allows to reconstruct the canonical result for real field theory from the p-adic effective potential and provide an explanation of this fact. On the other hand, in the p -> infinity limit, the theory exhibits very peculiar behavior with emerging logarithmic terms in the effective potential, which has no analogue in real theories.
引用
收藏
页数:10
相关论文
共 39 条
[21]   Edge length dynamics on graphs with applications to p-adic AdS/CFT [J].
Gubser, Steven S. ;
Heydeman, Matthew ;
Jepsen, Christian ;
Marcolli, Matilde ;
Parikh, Sarthak ;
Saberi, Ingmar ;
Stoica, Bogdan ;
Trundy, Brian .
JOURNAL OF HIGH ENERGY PHYSICS, 2017, (06)
[22]   p-Adic AdS/CFT [J].
Gubser, Steven S. ;
Knaute, Johannes ;
Parikh, Sarthak ;
Samberg, Andreas ;
Witaszczyk, Przemek .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 353 (03) :1019-1059
[23]   Tensor networks, p-adic fields, and algebraic curves: arithmetic and the AdS3/CFT2 correspondence [J].
Heydeman, Matthew ;
Marcolli, Matilde ;
Saberi, Ingmar A. ;
Stoica, Bogdan .
ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2018, 22 (01) :93-176
[24]  
Huang A., ARXIV200101725HEPTH
[25]  
Kac V.G., 2002, QUANTUM CALCULUS
[26]   RENORMALIZATION-GROUP IN A FERMIONIC HIERARCHICAL MODEL [J].
LERNER, EY ;
MISSAROV, MD .
THEORETICAL AND MATHEMATICAL PHYSICS, 1994, 101 (02) :1353-1360
[27]   SCALAR MODELS OF P-ADIC QUANTUM-FIELD THEORY AND HIERARCHICAL-MODELS [J].
LERNER, EY ;
MISSAROV, MD .
THEORETICAL AND MATHEMATICAL PHYSICS, 1989, 78 (02) :177-184
[28]   P-ADIC CONFORMAL-INVARIANCE AND THE BRUHAT-TITS TREE [J].
LERNER, EY ;
MISSAROV, MD .
LETTERS IN MATHEMATICAL PHYSICS, 1991, 22 (02) :123-129
[29]  
Manin Y.I., 2002, Adv. Theor. Math. Phys., V5, P617, DOI DOI 10.4310/ATMP.2001.v5.n3.a6
[30]   RENORMALIZATION OF O(N) NONLINEAR SIGMA-MODEL ON A P-ADIC FIELD [J].
OKADA, Y ;
UBRIACO, MR .
PHYSICAL REVIEW LETTERS, 1988, 61 (17) :1910-1913