Elevated host lipid metabolism revealed by iTRAQ-based quantitative proteomic analysis of cerebrospinal fluid of tuberculous meningitis patients

被引:21
|
作者
Mu, Jun [1 ,2 ,3 ,4 ]
Yang, Yongtao [2 ,3 ,4 ,5 ]
Chen, Jin [1 ,2 ,3 ,4 ]
Cheng, Ke [1 ,2 ,3 ,4 ]
Li, Qi [1 ,2 ,3 ,4 ]
Wei, Yongdong [1 ,2 ,3 ,4 ]
Zhu, Dan [1 ,2 ,3 ,4 ]
Shao, Weihua [1 ,2 ,3 ,4 ]
Zheng, Peng [1 ,2 ,3 ,4 ]
Xie, Peng [1 ,2 ,3 ,4 ,5 ]
机构
[1] Chongqing Med Univ, Affiliated Hosp 1, Dept Neurol, Chongqing, Peoples R China
[2] Chongqing Med Univ, Inst Neurosci, Chongqing, Peoples R China
[3] Chongqing Med Univ, Collaborat Innovat Ctr Brain Sci, Chongqing, Peoples R China
[4] Chongqing Key Lab Neurobiol, Chongqing, Peoples R China
[5] Chongqing Med Univ, Yongchuan Hosp, Dept Neurol, Chongqing, Peoples R China
关键词
Tuberculous meningitis; ApoB; Cerebrospinal fluid; iTRAQ; Proteomic; MYCOBACTERIUM-TUBERCULOSIS; BIOMARKERS; DIAGNOSIS;
D O I
10.1016/j.bbrc.2015.08.036
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Purpose: Tuberculous meningitis (TBM) remains to be one of the most deadly infectious diseases. The pathogen interacts with the host immune system, the process of which is largely unknown. Various cellular processes of Mycobacterium tuberculosis (MTB) centers around lipid metabolism. To determine the lipid metabolism related proteins, a quantitative proteomic study was performed here to identify differential proteins in the cerebrospinal fluid (CSF) obtained from TBM patients (n = 12) and healthy controls (n = 12). Methods: CSF samples were desalted, concentrated, labelled with isobaric tags for relative and absolute quantitation (iTRAQ (TM)), and analyzed by multi-dimensional liquid chromatography-tandem mass spectrometry (LC-MS/MS). Gene ontology and proteomic phenotyping analysis of the differential proteins were conducted using Database for Annotation, Visualization, and Integrated Discovery (DAVID) Bioinformatics Resources. ApoE and ApoB were selected for validation by ELISA. Results: Proteomic phenotyping of the 4 differential proteins was invloved in the lipid metabolism. ELISA showed significantly increased ApoB levels in TBM subjects compared to healthy controls. Area under the receiver operating characteristic curve analysis demonstrated ApoB levels could distinguish TBM subjects from healthy controls and viral meningitis subjects with 89.3% sensitivity and 92% specificity. Conclusions: CSF lipid metabolism disregulation, especially elevated expression of ApoB, gives insights into the pathogenesis of TBM. Further evaluation of these findings in larger studies including antituberculosis medicated and unmedicated patient cohorts with other center nervous system infectious diseases is required for successful clinical translation. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:689 / 695
页数:7
相关论文
共 50 条
  • [21] iTRAQ-based quantitative proteomic analysis reveals the role of the tonoplast in fruit senescence
    Liu, Ruiling
    Wang, Yuying
    Qin, Guozheng
    Tian, Shiping
    JOURNAL OF PROTEOMICS, 2016, 146 : 80 - 89
  • [22] iTRAQ-based quantitative proteomic analysis of herbicide stress in Avena ludoviciana Durieu
    Adim, Hossein
    Fahmideh, Leila
    Fakheri, Barat Ali
    Zarrini, Hamid Najafi
    Sasanfar, Hamidreza
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [23] ITRAQ-Based Quantitative Proteomic Analysis of Heart in a Rat Model of Exhaustive Training
    Liu, Haiyan
    Cao, Xuebin
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2015, 66 (16) : C30 - C30
  • [24] iTRAQ-based quantitative proteomic analysis provides insight for molecular mechanism of neuroticism
    Lei Tian
    Hong-Zhao You
    Hao Wu
    Yu Wei
    Min Zheng
    Lei He
    Jin-Ying Liu
    Shu-Zhen Guo
    Yan Zhao
    Ren-Lai Zhou
    Xingang Hu
    Clinical Proteomics, 2019, 16
  • [25] iTRAQ-based quantitative proteomic analysis of Pelteobagrus vachelli liver in response to hypoxia
    Wang, Min
    Liao, Shujia
    Fu, Zhineng
    Zang, Xuechun
    Yin, Shaowu
    Wang, Tao
    JOURNAL OF PROTEOMICS, 2022, 251
  • [26] iTRAQ-based quantitative proteomic analysis of wheat roots in response to salt stress
    Jiang, Qiyan
    Li, Xiaojuan
    Niu, Fengjuan
    Sun, Xianjun
    Hu, Zheng
    Zhang, Hui
    PROTEOMICS, 2017, 17 (08)
  • [27] iTRAQ-Based Quantitative Proteomic Analysis of the Potentiated and Dormant Antler Stem Cells
    Dong, Zhen
    Ba, Hengxing
    Zhang, Wei
    Coates, Dawn
    Li, Chunyi
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2016, 17 (11)
  • [28] iTRAQ-based quantitative subcellular proteomic analysis of Avibirnavirus-infected cells
    Sun, Yanting
    Hu, Boli
    Fan, Chengfei
    Jia, Lu
    Zhang, Yina
    Du, Aifang
    Zheng, Xiaojuan
    Zhou, Jiyong
    ELECTROPHORESIS, 2015, 36 (14) : 1596 - 1611
  • [29] iTRAQ-based quantitative proteomic analysis provides insight for molecular mechanism of neuroticism
    Tian, Lei
    You, Hong-Zhao
    Wu, Hao
    Wei, Yu
    Zheng, Min
    He, Lei
    Liu, Jin-Ying
    Guo, Shu-Zhen
    Zhao, Yan
    Zhou, Ren-Lai
    Hu, Xingang
    CLINICAL PROTEOMICS, 2019, 16 (01)
  • [30] iTRAQ-based quantitative proteomic analysis of porcine uterine fluid during pre-implantation period of pregnancy
    He, Yanjuan
    Zang, Xupeng
    Kuang, Jingjing
    Yang, Huaqiang
    Gu, Ting
    Yang, Jie
    Li, Zicong
    Zheng, Enqin
    Xu, Zheng
    Cai, Gengyuan
    Wu, Zhenfang
    Hong, Linjun
    JOURNAL OF PROTEOMICS, 2022, 261