Pade approximation to the logarithmic derivative of the gauss hypergeometric function

被引:0
|
作者
Hata, M [1 ]
Huttner, M [1 ]
机构
[1] Kyoto Univ, Fac Integrated Human Studies, Div Math, Kyoto 6068501, Japan
来源
ANALYTIC NUMBER THEORY | 2002年 / 6卷
关键词
Pade approximation; Gauss hypergeometric function;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct explicitly (n, n-1)-Pade approximation to the logarithmic derivative of Gauss hypergeometric function for arbitrary parameters by the simple combinatorial method used by Maier and Chudnovsky.
引用
收藏
页码:157 / 172
页数:16
相关论文
共 50 条
  • [31] Fractional Gauss hypergeometric differential equation
    Abu Hammad, Mamon
    Alzaareer, Hamza
    Al-Zoubi, Hassan
    Dutta, Hemen
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2019, 22 (07) : 1113 - 1121
  • [32] Algebraic Transformations of Gauss Hypergeometric Functions
    Vidunas, Raimundas
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2009, 52 (02): : 139 - 180
  • [33] Multivariate generalization of the Gauss hypergeometric distribution
    Nagar, Daya K.
    Bedoya-Valencia, Danilo
    Nadarajah, Saralees
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2015, 44 (04): : 933 - 948
  • [34] The bivariate Gauss hypergeometric beta distribution
    Nadarajah, Saralees
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2008, 19 (12) : 859 - 868
  • [35] Exploring multivariate Pade approximants for multiple hypergeometric series
    Cuyt, A
    Driver, K
    Tan, JQ
    Verdonk, B
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 1998, 10 (01) : 29 - 49
  • [36] A GRUSS TYPE INTEGRAL INEQUALITY ASSOCIATED WITH GAUSS HYPERGEOMETRIC FUNCTION FRACTIONAL INTEGRAL OPERATOR
    Choi, Junesang
    Purohit, Sunil Dutt
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2015, 30 (02): : 81 - 92
  • [37] Using Arnoldi Process in the Computation of Function-Valued Pade Approximation
    Shen, Jindong
    Gu, Chuanqing
    Cao, Feilong
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON APPLIED MATRIX THEORY, 2009, : 135 - 137
  • [38] APPROXIMATION BY REPEATED PADE APPROXIMANTS
    AMBROLADZE, A
    WALLIN, H
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1995, 62 (03) : 353 - 358
  • [39] Pade approximation and continued fractions
    Lorentzen, Lisa
    APPLIED NUMERICAL MATHEMATICS, 2010, 60 (12) : 1364 - 1370
  • [40] Spurious poles in Pade approximation
    Stahl, H
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 99 (1-2) : 511 - 527