Geometry in the Entanglement Dynamics of the Double Jaynes-Cummings Model

被引:11
作者
Vieira, A. R. [1 ]
de Oliveira Junior, J. G. G. [2 ]
Peixoto de Faria, J. G. [3 ]
Nemes, M. C. [1 ]
机构
[1] Univ Fed Minas Gerais, Dept Fis, BR-30123970 Belo Horizonte, MG, Brazil
[2] Univ Fed Reconcavo Bahia, Ctr Formacao Prof, BR-45300000 Amargosa, BA, Brazil
[3] Ctr Fed Educ Tecnol Minas Gerais, Dept Acad Disciplinas Basicas, BR-30510000 Belo Horizonte, MG, Brazil
关键词
Entanglement; Geometry; Jaynes-Cummings model; Predictability; SUDDEN-DEATH; QUANTUM;
D O I
10.1007/s13538-013-0174-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report on the geometric character of the entanglement dynamics of two pairs of qubits evolving according to the double Jaynes-Cummings model. We show that the entanglement dynamics for the initial states (sic)psi(0)> = cos alpha (sic) 0 > + sin alpha (sic) 1 > and (sic)(0)> = cos alpha (sic) 1 > + sin alpha (sic) 0 > cover three-dimensional surfaces in the diagram C-ij x C-ik x C-il, where C-mn stands for the concurrence between qubits m and n, varying 0 <= alpha <= pi)2. In the first case, projections of the surfaces on a diagram C-ij x C-kl are conics. In the second case, curves can be more complex. We relate those conics with a measurable quantity, the predictability. We also derive inequalities limiting the sum of the squares of the concurrence of every bipartition and show that sudden death of entanglement is intimately connected to the size of the average radius of a hypersphere.
引用
收藏
页码:19 / 29
页数:11
相关论文
共 21 条
[11]   Entanglement, purity, and energy: Two qubits versus two modes [J].
McHugh, Derek ;
Ziman, Mario ;
Buzek, Vladimir .
PHYSICAL REVIEW A, 2006, 74 (04)
[12]   Entanglement invariant for the double Jaynes-Cummings model [J].
Sainz, Isabel ;
Bjork, Gunnar .
PHYSICAL REVIEW A, 2007, 76 (04)
[13]   Direct measurement of finite-time disentanglement induced by a reservoir [J].
Santos, MF ;
Milman, P ;
Davidovich, L ;
Zagury, N .
PHYSICAL REVIEW A, 2006, 73 (04)
[14]   EXACT SOLUTION FOR AN N-MOLECULE-RADIATION-FIELD HAMILTONIAN [J].
TAVIS, M ;
CUMMINGS, FW .
PHYSICAL REVIEW, 1968, 170 (02) :379-&
[15]   Entanglement of formation of an arbitrary state of two qubits [J].
Wootters, WK .
PHYSICAL REVIEW LETTERS, 1998, 80 (10) :2245-2248
[16]   Pairwise concurrence dynamics:: a four-qubit model [J].
Yonac, M. ;
Yu, Ting ;
Eberly, J. H. .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2007, 40 (09) :S45-S59
[17]   Sudden death of entanglement of two Jaynes-Cummings atoms [J].
Yonac, Muhammed ;
Yu, Ting ;
Eberly, J. H. .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2006, 39 (15) :S621-S625
[18]   Finite-time disentanglement via spontaneous emission [J].
Yu, T ;
Eberly, JH .
PHYSICAL REVIEW LETTERS, 2004, 93 (14) :140404-1
[19]   Entanglement decay versus energy change: A model [J].
Yu, Ting .
PHYSICS LETTERS A, 2007, 361 (4-5) :287-290
[20]   Controlling entanglement sudden death and birth in cavity QED [J].
Zhang, Jian-Song ;
Xu, Jing-Bo .
OPTICS COMMUNICATIONS, 2009, 282 (17) :3652-3655