Geometry in the Entanglement Dynamics of the Double Jaynes-Cummings Model

被引:11
作者
Vieira, A. R. [1 ]
de Oliveira Junior, J. G. G. [2 ]
Peixoto de Faria, J. G. [3 ]
Nemes, M. C. [1 ]
机构
[1] Univ Fed Minas Gerais, Dept Fis, BR-30123970 Belo Horizonte, MG, Brazil
[2] Univ Fed Reconcavo Bahia, Ctr Formacao Prof, BR-45300000 Amargosa, BA, Brazil
[3] Ctr Fed Educ Tecnol Minas Gerais, Dept Acad Disciplinas Basicas, BR-30510000 Belo Horizonte, MG, Brazil
关键词
Entanglement; Geometry; Jaynes-Cummings model; Predictability; SUDDEN-DEATH; QUANTUM;
D O I
10.1007/s13538-013-0174-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report on the geometric character of the entanglement dynamics of two pairs of qubits evolving according to the double Jaynes-Cummings model. We show that the entanglement dynamics for the initial states (sic)psi(0)> = cos alpha (sic) 0 > + sin alpha (sic) 1 > and (sic)(0)> = cos alpha (sic) 1 > + sin alpha (sic) 0 > cover three-dimensional surfaces in the diagram C-ij x C-ik x C-il, where C-mn stands for the concurrence between qubits m and n, varying 0 <= alpha <= pi)2. In the first case, projections of the surfaces on a diagram C-ij x C-kl are conics. In the second case, curves can be more complex. We relate those conics with a measurable quantity, the predictability. We also derive inequalities limiting the sum of the squares of the concurrence of every bipartition and show that sudden death of entanglement is intimately connected to the size of the average radius of a hypersphere.
引用
收藏
页码:19 / 29
页数:11
相关论文
共 21 条
[1]   Conservation rules for entanglement transfer between qubits [J].
Chan, Stanley ;
Reid, M. D. ;
Ficek, Z. .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2010, 43 (21)
[2]   Entanglement evolution of two remote and non-identical Jaynes-Cummings atoms [J].
Chan, Stanley ;
Reid, M. D. ;
Ficek, Z. .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2009, 42 (06)
[3]   A study on the sudden death of entanglement [J].
Cui, H. T. ;
Li, K. ;
Yi, X. X. .
PHYSICS LETTERS A, 2007, 365 (1-2) :44-48
[4]   Can quantum-mechanical description of physical reality be considered complete? [J].
Einstein, A ;
Podolsky, B ;
Rosen, N .
PHYSICAL REVIEW, 1935, 47 (10) :0777-0780
[5]   Dynamics of pairwise entanglement between two Tavis-Cummings atoms [J].
Guo, Jin-Liang ;
Song, He-Shan .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (08)
[6]  
Jakob M., 2000, OPT COMMUN, V179, P337
[7]   COMPARISON OF QUANTUM AND SEMICLASSICAL RADIATION THEORIES WITH APPLICATION TO BEAM MASER [J].
JAYNES, ET ;
CUMMINGS, FW .
PROCEEDINGS OF THE IEEE, 1963, 51 (01) :89-+
[8]   Sudden birth versus sudden death of entanglement in multipartite systems [J].
Lopez, C. E. ;
Romero, G. ;
Lastra, F. ;
Solano, E. ;
Retamal, J. C. .
PHYSICAL REVIEW LETTERS, 2008, 101 (08)
[9]   Entanglement dynamics for the double Tavis-Cummings model [J].
Man, Z. X. ;
Xia, Y. J. ;
An, N. B. .
EUROPEAN PHYSICAL JOURNAL D, 2009, 53 (02) :229-236
[10]   On conditions for atomic entanglement sudden death in cavity QED [J].
Man, Zhong-Xiao ;
Xia, Yun-Jie ;
An, Nguyen Ba .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2008, 41 (08)