Baseline building energy modeling and localized uncertainty quantification using Gaussian mixture models

被引:48
作者
Srivastav, Abhishek [1 ]
Tewari, Ashutosh [1 ]
Dong, Bing [2 ]
机构
[1] United Technol Res Ctr, E Hartford, CT 06118 USA
[2] Univ Texas San Antonio, Dept Mech Engn, San Antonio, TX 78249 USA
关键词
Baseline building energy modeling; Gaussian Mixture Models; Uncertainty quantification; Retrofit analysis; EM ALGORITHM; SAVINGS;
D O I
10.1016/j.enbuild.2013.05.037
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Uncertainty analysis of building energy prediction is critical to characterize the baseline performance of a building for impact assessment of energy saving schemes that include fault detection and diagnosis (FDD) systems, advanced control policies and retrofits among others. This paper presents a novel approach based on Gaussian Mixture Regression (GMR) for modeling building energy use with parameterized and locally adaptive uncertainty quantification. The choice of GMR is motivated by two key advantages (1) the number of unique operational patterns of a building can be identified using an information-theoretic criteria in a data-driven manner and (2) confidence bounds on baseline prediction are localized and their estimation is integrated with the modeling process itself. The proposed GMR approach is applied to two cases (1) one year synthetic data set generated by Department of Energy (DoE) reference model for a supermarket in Chicago climate and (2) one year field data for a retail store building located in California. The results from GMR model are compared with some prevalent multivariate regression models for baseline building energy use. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:438 / 447
页数:10
相关论文
共 18 条
[1]  
[Anonymous], 2002, ASHRAE Guideline 14-2002: Measurement of Energy and Demand Savings
[2]  
Deru M., 2010, DEP ENERGY COMMERCIA
[3]   A Fourier series model to predict hourly heating and cooling energy use in commercial buildings with outdoor temperature as the only weather variable [J].
Dhar, A ;
Reddy, TA ;
Claridge, DE .
JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 1999, 121 (01) :47-53
[4]  
EVO, 2012, CONC OPT DET EN WAT, V1
[5]  
Fels M., 1986, ENERG BUILDINGS, P5
[6]   Gaussian process modeling for measurement and verification of building energy savings [J].
Heo, Yeonsook ;
Zavala, Victor M. .
ENERGY AND BUILDINGS, 2012, 53 :7-18
[7]   USE OF SIMPLIFIED SYSTEM MODELS TO MEASURE RETROFIT ENERGY SAVINGS [J].
KATIPAMULA, S ;
CLARIDGE, DE .
JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 1993, 115 (02) :57-68
[8]  
KISSOCK JK, 1993, THESIS TEXAS A M U
[9]  
Krarti M., 1998, J SOL ENERG-T ASME, V120, P47
[10]  
Neal RM, 1998, NATO ADV SCI I D-BEH, V89, P355