NONLINEAR RETARDED INTEGRAL INEQUALITIES ON TIME SCALES AND THEIR APPLICATIONS

被引:16
作者
Liu, Haidong [1 ]
Meng, Fanwei [1 ]
机构
[1] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Peoples R China
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2018年 / 12卷 / 01期
关键词
Retarded integral inequality; time scales; dynamic equation; bounds; DYNAMIC EQUATIONS; DIFFERENTIAL-EQUATIONS; 2ND-ORDER;
D O I
10.7153/jmi-2018-12-17
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, some new nonlinear retarded integral inequalities on time scales are established, which provide a handy tool in the study of some retarded integral equations and dynamic equations on time scales. The results unify and extend some continuous inequalities and their corresponding discrete analogues. Some applications are also presented to illustrate the usefulness of some of our results.
引用
收藏
页码:219 / 234
页数:16
相关论文
共 32 条
[1]   Existence results for periodic solutions of integro-dynamic equations on time scales [J].
Adivar, Murat ;
Raffoul, Youssef N. .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2009, 188 (04) :543-559
[2]   Inequalities on time scales: A survey [J].
Agarwal, R ;
Bohner, M ;
Peterson, A .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2001, 4 (04) :535-557
[3]  
[Anonymous], ADV DYN SYST APPL
[4]  
[Anonymous], J INEQUAL PURE APPL
[5]   An application of time scales to economics [J].
Atici, FM ;
Biles, DC ;
Lebedinsky, A .
MATHEMATICAL AND COMPUTER MODELLING, 2006, 43 (7-8) :718-726
[6]  
Bi L, 2008, NONLINEAR ANAL, V68, P170
[7]  
Bohner M., 2001, Dynamic equations on time scales: an introduction with applications, DOI DOI 10.1007/978-1-4612-0201-1
[8]  
Bohner M., 2003, Advances in Dynamic Equations on Time Scales: An Introduction with Applications, DOI DOI 10.1007/978-0-8176-8230-9
[9]  
CHRISTIANSEN F. B., 1977, LECT NOTES ECOLOGICA
[10]   HIGHER-ORDER SINGULAR MULTI-POINT BOUNDARY-VALUE PROBLEMS ON TIME SCALES [J].
Dogan, Abdulkadir ;
Graef, John R. ;
Kong, Lingju .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2011, 54 :345-361