Determination of the topography and biometry of chlorosomes by atomic force microscopy

被引:70
|
作者
Martinez-Planells, A
Arellano, JB
Borrego, CA
López-Iglesias, C
Gich, F
Garcia-Gil, JS
机构
[1] Univ Girona, Inst Aquat Ecol, Microbiol Sect, E-17071 Girona, Spain
[2] CSIC, Inst Nat Resources & Agrobiol, Dept Plant Physiol, E-37008 Salamanca, Spain
[3] Univ Barcelona, Sci Serv, E-08028 Barcelona, Spain
[4] Univ Barcelona, Tech Serv, E-08028 Barcelona, Spain
关键词
atomic force microscopy; biometry; chlorosomes; freeze-drying; green sulfur bacteria; topography; transmission electron microscopy;
D O I
10.1023/A:1014955614757
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Isolated chlorosomes of several species of filamentous anoxygenic phototrophic bacteria (FAPB) and green sulfur bacteria (GSB) were examined by atomic force microscopy (AFM) to characterize their topography and biometry. Chlorosomes of Chloroflexus aurantiacus, Chloronema sp., and Chlorobium (Chl.) tepidum exhibited a smooth surface, whereas those of Chl. phaeobacteroides and Chl. vibrioforme showed a tough one. The potential artifactual nature of the two types of surfaces, which may have arisen because of sample manipulation or AFM processing, was ruled out when AFM images and transmission electron micrographs were compared. The difference in surface texture might be associated with the specific lipid and polypeptide composition of the chlorosomal envelope. The study of three-dimensional AFM images also provides information about the size and shape of individual chlorosomes. Chlorosomal volumes ranged from ca. 35 000 nm(3) to 247 000 nm(3) for Chl. vibrioforme and Chl. phaeobacteroides, respectively. The mean height was about 25 nm for all the species studied, except Chl. vibrioforme, which showed a height of only 14 nm, suggesting that GSB have 1-2 layers of bacteriochlorophyll (BChl) rods and GFB have similar to4. Moreover, the average number of BChl molecules per chlorosome was estimated according to models of BChl rod organisation. These calculations yielded upper limits ranging from 34 000 BChl molecules in Chl. vibrioforme to 240 000 in Chl. phaeobacteroides, values that greatly surpass those conventionally accepted.
引用
收藏
页码:83 / 90
页数:8
相关论文
共 50 条
  • [41] Hyphenating Atomic Force Microscopy
    Eifert, Alexander
    Kranz, Christine
    ANALYTICAL CHEMISTRY, 2014, 86 (11) : 5190 - 5200
  • [42] Nanofabrication with atomic force microscopy
    Tang, Q
    Shi, SQ
    Zhou, LM
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2004, 4 (08) : 948 - 963
  • [43] Atomic force microscopy of gibbsite
    Lloyd, S
    Thurgate, SM
    Cornell, RM
    Parkinson, GM
    APPLIED SURFACE SCIENCE, 1998, 135 (1-4) : 178 - 182
  • [44] Artifacts in Atomic Force Microscopy
    Gainutdinov R.V.
    Arutyunov P.A.
    Russian Microelectronics, 2001, 30 (4) : 219 - 224
  • [45] Quantitative atomic force microscopy
    Soengen, Hagen
    Bechstein, Ralf
    Kuehnle, Angelika
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2017, 29 (27)
  • [46] Lateral force modulation atomic force microscopy
    Yamanaka, K
    JOURNAL OF JAPANESE SOCIETY OF TRIBOLOGISTS, 2001, 46 (11) : 868 - 874
  • [47] Force sensing and mapping by atomic force microscopy
    Green, NH
    Allen, S
    Davies, MC
    Roberts, CJ
    Tendler, SJB
    Williams, PM
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2002, 21 (01) : 64 - 73
  • [48] Study on binding force by atomic force microscopy
    Xu, Ke
    Gao, Zhijun
    Ying, Yu
    Wang, Xin
    Liu, Xiyang
    Zhang, Rui
    Gong, Wei
    Xu, Chong
    INTEGRATED FERROELECTRICS, 2017, 182 (01) : 170 - 179
  • [49] Topography of Schwann cell with atomic force microscope
    Sajid, Nusrat
    CHINESE JOURNAL OF PHYSICS, 2020, 68 : 381 - 386
  • [50] Improving Atomic Force Microscopy imaging with the adaptation of ultrasonic force microscopy
    Druffner, CJ
    Sathish, S
    NONDESTRUCTIVE EVALUATION AND RELIABILITY OF MICRO-AND NANOMATERIAL SYSTEMS, 2002, 4703 : 105 - 113