DEPTH OF F-SINGULARITIES AND BASE CHANGE OF RELATIVE CANONICAL SHEAVES

被引:12
作者
Patakfalvi, Zsolt [1 ]
Schwede, Karl [2 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08542 USA
[2] Penn State Univ, Dept Math, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
depth; Cohen-Macaulay; F-singularities; base change; relative canonical sheaf; 13A35; 14J10; 14J17; 14F18; 13C14; 13C15; TEST IDEALS; FROBENIUS; PURITY; RINGS;
D O I
10.1017/S1474748013000066
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a characteristic-p > 0 variety X with controlled F-singularities, we state conditions which imply that a divisorial sheaf is Cohen-Macaulay or atleast has depth >= 3 at certain points. This mirrors results of Kollar for varieties in characteristic 0. As an application, we show that relative canonical sheaves are compatible with arbitrary base change for certain families with sharply F-pure fibers.
引用
收藏
页码:43 / 63
页数:21
相关论文
共 38 条
  • [1] The structure of F-pure rings
    Aberbach, IM
    Enescu, F
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2005, 250 (04) : 791 - 806
  • [2] ALEXEEV V., ARXIV11094164
  • [3] Alexeev V, 2008, PURE APPL MATH Q, V4, P767
  • [4] [Anonymous], 2004, GEOMETRIC ASPECTS DW
  • [5] [Anonymous], 1998, Cambridge Tracts in Mathematics
  • [6] [Anonymous], ARXIV09071506
  • [7] Blickle M., ARXIV11071082
  • [8] Blickle M, 2013, J ALGEBRAIC GEOM, V22, P49
  • [9] Brion Michel, 2005, PROGR MATH, V231
  • [10] Bruns W., 1993, COHEN MACAULAY RINGS, V39