High-performance SERS substrates: Advances and challenges

被引:278
作者
Sharma, Bhavya [1 ]
Cardinal, M. Fernanda [1 ]
Kleinman, Samuel L. [1 ]
Greeneltch, Nathan G. [1 ]
Frontiera, Renee R. [2 ]
Blaber, Martin G. [1 ]
Schatz, George C. [1 ]
Van Duyne, Richard P. [1 ]
机构
[1] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[2] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
SURFACE-ENHANCED RAMAN; GOLD NANOPARTICLE DIMERS; EXCITATION SPECTROSCOPY; PLASMON RESONANCE; SEEDED GROWTH; HOT-SPOTS; METAL NANOPARTICLES; SILVER NANOCUBES; SCATTERING; ASSEMBLIES;
D O I
10.1557/mrs.2013.161
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Surface-enhanced Raman spectroscopy (SERS) is highly dependent upon the substrate, where excitation of the localized metal surface plasmon resonance enhances the vibrational scattering signal of proximate analyte molecules. This article reviews recent progress in the fabrication of SERS substrates and the requirements for characterization of plasmonic materials as SERS platforms. We discuss bottom-up fabrication of SERS substrates and illustrate the advantages of rational control of metallic nanoparticle synthesis and assembly for hot spot creation. We also detail top-down methods, including nanosphere lithography for the preparation of tunable, highly sensitive, and robust substrates, as well as the unique benefits of tip-enhanced Raman spectroscopy for simultaneous acquisition of molecular vibrational information and high spatial resolution imaging. Finally, we discuss future prospects and challenges in SERS, including the development of surface-enhanced femtosecond stimulated Raman spectroscopy, microfluidics with SERS, creating highly reproducible substrates, and the need for reliable characterization of substrates.
引用
收藏
页码:615 / 624
页数:10
相关论文
共 97 条
[31]   Plasmonic materials for surface-enhanced sensing and spectroscopy [J].
Haes, AJ ;
Haynes, CL ;
McFarland, AD ;
Schatz, GC ;
Van Duyne, RR ;
Zou, SL .
MRS BULLETIN, 2005, 30 (05) :368-375
[32]   Plasmon-sampled surface-enhanced Raman excitation spectroscopy [J].
Haynes, CL ;
Van Duyne, RP .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (30) :7426-7433
[33]  
Henkel T., 2011, SURFACE ENHANCED RAM, P173
[34]   SURFACE RAMAN SPECTROELECTROCHEMISTRY .1. HETEROCYCLIC, AROMATIC, AND ALIPHATIC-AMINES ADSORBED ON ANODIZED SILVER ELECTRODE [J].
JEANMAIRE, DL ;
VANDUYNE, RP .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1977, 84 (01) :1-20
[35]   Observation of Multiple Vibrational Modes in Ultrahigh Vacuum Tip-Enhanced Raman Spectroscopy Combined with Molecular-Resolution Scanning Tunneling Microscopy [J].
Jiang, N. ;
Foley, E. T. ;
Klingsporn, J. M. ;
Sonntag, M. D. ;
Valley, N. A. ;
Dieringer, J. A. ;
Seideman, T. ;
Schatz, G. C. ;
Hersam, M. C. ;
Van Duyne, R. P. .
NANO LETTERS, 2012, 12 (10) :5061-5067
[36]   Large-area nanogap plasmon resonator arrays for plasmonics applications [J].
Jin, Mingliang ;
van Wolferen, Henk ;
Wormeester, Herbert ;
van den Berg, Albert ;
Carlen, Edwin T. .
NANOSCALE, 2012, 4 (15) :4712-4718
[37]   Noninvasive molecular imaging of small living subjects using Raman spectroscopy [J].
Keren, S. ;
Zavaleta, C. ;
Cheng, Z. ;
de la Zerda, A. ;
Gheysens, O. ;
Gambhir, S. S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (15) :5844-5849
[38]   Platonic gold nanocrystals [J].
Kim, F ;
Connor, S ;
Song, H ;
Kuykendall, T ;
Yang, PD .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (28) :3673-3677
[39]   Structure Enhancement Factor Relationships in Single Gold Nanoantennas by Surface-Enhanced Raman Excitation Spectroscopy [J].
Kleinman, Samuel L. ;
Sharma, Bhavya ;
Blaber, Martin G. ;
Henry, Anne-Isabelle ;
Valley, Nicholas ;
Freeman, R. Griffith ;
Natan, Michael J. ;
Schatz, George C. ;
Van Duyne, Richard P. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (01) :301-308
[40]   Creating, characterizing, and controlling chemistry with SERS hot spots [J].
Kleinman, Samuel L. ;
Frontiera, Renee R. ;
Henry, Anne-Isabelle ;
Dieringer, Jon A. ;
Van Duyne, Richard P. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (01) :21-36