Neuronal networks are characterized by highly heterogeneous connectivity, and this disorder was recently related experimentally to qualitative properties of the network. The motivation of this paper is to mathematically analyze the role of these disordered connectivities on the large-scale properties of neuronal networks. To this end, we analyze here large-scale limit behaviors of neural networks including, for biological relevance, multiple populations, random connectivities and interaction delays. Due to the randomness of the connectivity, usual mean-field methods (e.g. coupling) cannot be applied, but, similarly to studies developed for spin glasses, we will show that the sequences of empirical measures satisfy a large deviation principle, and converge towards a self-consistent non-Markovian process. From a mathematical viewpoint, the proof differs from previous works in that we are working in infinite-dimensional spaces (interaction delays) and consider multiple cell types. The limit obtained formally characterizes the macroscopic behavior of the network. We propose a dynamical systems approach in order to address the qualitative nature of the solutions of these very complex equations, and apply this methodology to three instances in order to show how non-centered coefficients, interaction delays and multiple populations networks are affected by disorder levels. We identify a number of phase transitions in such systems upon changes in delays, connectivity patterns and dispersion, and particularly focus on the emergence of non-equilibrium states involving synchronized oscillations.