An Emergency Department Patient Flow Model Based on Queueing Theory Principles

被引:59
作者
Wiler, Jennifer L. [1 ,2 ]
Bolandifar, Ehsan [3 ]
Griffey, Richard T. [2 ]
Poirier, Robert F. [2 ]
Olsen, Tava [4 ]
机构
[1] Univ Colorado, Sch Med, Dept Emergency Med, Aurora, CO USA
[2] Washington Univ, Sch Med, Div Emergency Med, St Louis, MO USA
[3] Chinese Univ Hong Kong, Dept Decis Sci & Managerial Econ, Shatin, Hong Kong, Peoples R China
[4] Univ Auckland, Dept Informat Syst & Operat Management, Auckland 1, New Zealand
关键词
HOSPITAL EMERGENCY; AMBULANCE SYSTEM; CALL-CENTER; LEAVE; TIME; PERFORMANCE; DIVERSIONS; SERVICES; INCREASE;
D O I
10.1111/acem.12215
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
ObjectivesThe objective was to derive and validate a novel queuing theory-based model that predicts the effect of various patient crowding scenarios on patient left without being seen (LWBS) rates. MethodsRetrospective data were collected from all patient presentations to triage at an urban, academic, adult-only emergency department (ED) with 87,705 visits in calendar year 2008. Data from specific time windows during the day were divided into derivation and validation sets based on odd or evendays. Patient records with incomplete time data were excluded. With an established call center queueing model, input variables were modified to adapt this model to the ED setting, while satisfying the underlying assumptions of queueing theory. The primary aim was the derivation and validation of an ED flow model. Chi-square and Student's t-tests were used for model derivation and validation. The secondary aim was estimating the effect of varying ED patient arrival and boarding scenarios on LWBS rates using this model. ResultsThe assumption of stationarity of the model was validated for three time periods (peak arrival rate=10:00 a.m. to 12:00 p.m.; a moderate arrival rate=8:00 a.m. to 10:00 a.m.; and lowest arrival rate=4:00 a.m. to 6:00 a.m.) and for differentdays of the week and month. Between 10:00 a.m. and 12:00 p.m., defined as the primary study period representing peak arrivals, 3.9% (n=4,038) of patients LWBS. Using the derived model, the predicted LWBS rate was 4%. LWBS rates increased as the rate of ED patient arrivals, treatment times, and ED boarding times increased. A 10% increase in hourly ED patient arrivals from the observed average arrival rate increased the predicted LWBS rate to 10.8%; a 10% decrease in hourly ED patient arrivals from the observed average arrival rate predicted a 1.6% LWBS rate. A 30-minute decrease in treatment time from the observed average treatment time predicted a 1.4% LWBS. A 1% increase in patient arrivals has the same effect on LWBS rates as a 1% increase in treatment time. Reducing boarding times by 10% is expected to reduce LWBS rates by approximately 0.8%. ConclusionsThis novel queuing theory-based model predicts the effect of patient arrivals, treatment time, and ED boarding on the rate of patients who LWBS at one institution. More studies are needed to validate this model across other institutions. (C) 2013 by the Society for Academic Emergency Medicine
引用
收藏
页码:939 / 946
页数:8
相关论文
共 50 条
  • [1] Quality and operations of portable X-ray examination procedures in the emergency room: queuing theory at work
    Abujudeh, Hani
    Vuong, Bill
    Baker, Stephen R.
    [J]. EMERGENCY RADIOLOGY, 2005, 11 (05) : 262 - 266
  • [2] Allon SD, SOC SCI RES NETWORK
  • [3] [Anonymous], 2008, EM ALGORITHM EXTENSI
  • [4] Emergency department overcrowding: Analysis of the factors of renege rate
    Asaro, Phillip V.
    Lewis, Lawrence M.
    Boxerman, Stuart B.
    [J]. ACADEMIC EMERGENCY MEDICINE, 2007, 14 (02) : 157 - 162
  • [5] Predicting overflow in an emergency department
    Au, L.
    Byrnes, G. B.
    Bain, C. A.
    Fackrell, M.
    Brand, C.
    Campbell, D. A.
    Taylor, P. G.
    [J]. IMA JOURNAL OF MANAGEMENT MATHEMATICS, 2009, 20 (01) : 39 - 49
  • [6] PATIENTS WHO LEAVE A PUBLIC HOSPITAL EMERGENCY DEPARTMENT WITHOUT BEING SEEN BY A PHYSICIAN - CAUSES AND CONSEQUENCES
    BAKER, DW
    STEVENS, CD
    BROOK, RH
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 1991, 266 (08): : 1085 - 1090
  • [7] BAKER JR, 1989, J OPER RES SOC, V40, P423
  • [8] Barton G K, 1986, JEMS, V11, P67
  • [9] Statistical analysis of a telephone call center: A queueing-science perspective
    Brown, L
    Gans, N
    Mandelbaum, A
    Sakov, A
    Shen, HP
    Zeltyn, S
    Zhao, L
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2005, 100 (469) : 36 - 50
  • [10] Broyles R, 2007, IIE IND ENG ANN RES