The Monotone Catenary Degree of Krull Monoids

被引:8
|
作者
Geroldinger, Alfred [1 ]
Yuan, Pingzhi [2 ]
机构
[1] Karl Franzens Univ Graz, Inst Math & Wissensch Rechnen, A-8010 Graz, Austria
[2] S China Normal Univ, Sch Math, Guangzhou 510631, Guangdong, Peoples R China
基金
奥地利科学基金会;
关键词
Non-unique factorizations; catenary degree; Krull monoids; TAME DEGREE; FACTORIZATIONS; DOMAINS; CHAINS;
D O I
10.1007/s00025-012-0250-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let H be a Krull monoid with finite class group G such that every class contains a prime divisor. The monotone catenary degree c (mon) (H) of H is the smallest integer m with the following property: for each and each two factorizations z, z' of a with length |z| a parts per thousand currency sign |z'|, there exist factorizations z = z (0), ... ,z (k) = z' of a with increasing lengths-that is, |z (0)| a parts per thousand currency sign ... a parts per thousand currency sign |z (k) |-such that, for each , z (i) arises from z (i-1) by replacing at most m atoms from z (i-1) by at most m new atoms. Up to now there was only an abstract finiteness result for c (mon) (H), but the present paper offers the first explicit upper and lower bounds for c (mon) (H) in terms of the group invariants of G.
引用
收藏
页码:999 / 1031
页数:33
相关论文
共 50 条
  • [11] The catenary and tame degree in finitely generated commutative cancellative monoids
    Chapman, S. T.
    Garcia-Sanchez, P. A.
    Llena, D.
    Ponomarenko, V.
    Rosales, J. C.
    MANUSCRIPTA MATHEMATICA, 2006, 120 (03) : 253 - 264
  • [12] On transfer Krull monoids
    Bashir, Aqsa
    Reinhart, Andreas
    SEMIGROUP FORUM, 2022, 105 (01) : 73 - 95
  • [13] The catenary and tame degree of numerical monoids generated by generalized arithmetic sequences
    Omidali, Mehdi
    FORUM MATHEMATICUM, 2012, 24 (03) : 627 - 640
  • [14] Some characterizations of Krull monoids
    Kim, Hwankoo
    Kim, Myeong Og
    Park, Young Soo
    ALGEBRA COLLOQUIUM, 2007, 14 (03) : 469 - 477
  • [15] Strong atoms in Krull monoids
    Angermueller, Gerhard
    SEMIGROUP FORUM, 2020, 101 (01) : 11 - 18
  • [16] The set of distances in Krull monoids
    Geroldinger, Alfred
    Yuan, Pingzhi
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2012, 44 : 1203 - 1208
  • [17] On transfer homomorphisms of Krull monoids
    Alfred Geroldinger
    Florian Kainrath
    Bollettino dell'Unione Matematica Italiana, 2021, 14 : 629 - 646
  • [18] C-monoids and congruence monoids in krull domains
    Halter-Koch, F
    Arithmetical Properties of Commutative Rings and Monoids, 2005, 241 : 71 - 98
  • [19] Strong atoms in Krull monoids
    Gerhard Angermüller
    Semigroup Forum, 2020, 101 : 11 - 18
  • [20] On transfer homomorphisms of Krull monoids
    Geroldinger, Alfred
    Kainrath, Florian
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2021, 14 (04): : 629 - 646