The Monotone Catenary Degree of Krull Monoids

被引:8
|
作者
Geroldinger, Alfred [1 ]
Yuan, Pingzhi [2 ]
机构
[1] Karl Franzens Univ Graz, Inst Math & Wissensch Rechnen, A-8010 Graz, Austria
[2] S China Normal Univ, Sch Math, Guangzhou 510631, Guangdong, Peoples R China
基金
奥地利科学基金会;
关键词
Non-unique factorizations; catenary degree; Krull monoids; TAME DEGREE; FACTORIZATIONS; DOMAINS; CHAINS;
D O I
10.1007/s00025-012-0250-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let H be a Krull monoid with finite class group G such that every class contains a prime divisor. The monotone catenary degree c (mon) (H) of H is the smallest integer m with the following property: for each and each two factorizations z, z' of a with length |z| a parts per thousand currency sign |z'|, there exist factorizations z = z (0), ... ,z (k) = z' of a with increasing lengths-that is, |z (0)| a parts per thousand currency sign ... a parts per thousand currency sign |z (k) |-such that, for each , z (i) arises from z (i-1) by replacing at most m atoms from z (i-1) by at most m new atoms. Up to now there was only an abstract finiteness result for c (mon) (H), but the present paper offers the first explicit upper and lower bounds for c (mon) (H) in terms of the group invariants of G.
引用
收藏
页码:999 / 1031
页数:33
相关论文
共 50 条
  • [1] The Monotone Catenary Degree of Krull Monoids
    Alfred Geroldinger
    Pingzhi Yuan
    Results in Mathematics, 2013, 63 : 999 - 1031
  • [2] THE CATENARY DEGREE OF KRULL MONOIDS II
    Geroldinger, Alfred
    Zhong, Qinghai
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2015, 98 (03) : 324 - 354
  • [3] The catenary degree of Krull monoids I
    Geroldinger, Alfred
    Grynkiewicz, David J.
    Schmid, Wolfgang A.
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2011, 23 (01): : 137 - 169
  • [4] The monotone catenary degree of monoids of ideals
    Geroldinger, Alfred
    Reinhart, Andreas
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2019, 29 (03) : 419 - 457
  • [5] MINIMAL RELATIONS AND CATENARY DEGREES IN KRULL MONOIDS
    Fan, Yushuang
    Geroldinger, Alfred
    JOURNAL OF COMMUTATIVE ALGEBRA, 2019, 11 (01) : 29 - 47
  • [6] On the Delta set and catenary degree of Krull monoids with infinite cyclic divisor class group
    Baginski, Paul
    Chapman, S. T.
    Rodriguez, Ryan
    Schaeffer, George J.
    She, Yiwei
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2010, 214 (08) : 1334 - 1339
  • [7] The catenary and tame degree of numerical monoids
    Chapman, S. T.
    Garcia-Sanchez, P. A.
    Llena, D.
    FORUM MATHEMATICUM, 2009, 21 (01) : 117 - 129
  • [8] The catenary degree and tameness of factorizations in weakly Krull domains
    Geroldinger, A
    FACTORIZATION IN INTEGRAL DOMAINS, 1997, 189 : 113 - 153
  • [9] The Catenary and Tame Degree in Finitely Generated Commutative Cancellative Monoids
    S. T. Chapman
    P. A. García-Sánchez
    D. Llena
    V. Ponomarenko
    J. C. Rosales
    manuscripta mathematica, 2006, 120
  • [10] On transfer Krull monoids
    Aqsa Bashir
    Andreas Reinhart
    Semigroup Forum, 2022, 105 : 73 - 95