On weak residual error estimation

被引:14
作者
Liu, JL
机构
[1] Department of Applied Mathematics, National Chiao Tung University, Hsinchu
关键词
adaptivity; a posteriori error estimates; finite element; finite volume; variational problems;
D O I
10.1137/S1064827593249587
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A general framework for weak residual error estimators applying to various types of boundary value problems in connection with finite element and finite volume approximations is developed. Basic ideas commonly shared by various applications in error estimation and adaptive computation are presented and illustrated. Some numerical results are given to show the effectiveness and efficiency of the estimators.
引用
收藏
页码:1249 / 1268
页数:20
相关论文
共 30 条
[1]   2ND-ORDER FINITE-ELEMENT APPROXIMATIONS AND A POSTERIORI ERROR ESTIMATION FOR TWO-DIMENSIONAL PARABOLIC-SYSTEMS [J].
ADJERID, S ;
FLAHERTY, JE .
NUMERISCHE MATHEMATIK, 1988, 53 (1-2) :183-198
[2]   A POSTERIORI ERROR ESTIMATION WITH FINITE-ELEMENT METHODS OF LINES FOR ONE-DIMENSIONAL PARABOLIC-SYSTEMS [J].
ADJERID, S ;
FLAHERTY, JE ;
WANG, YJ .
NUMERISCHE MATHEMATIK, 1993, 65 (01) :1-21
[3]   A UNIFIED APPROACH TO A POSTERIORI ERROR ESTIMATION USING ELEMENT RESIDUAL METHODS [J].
AINSWORTH, M ;
ODEN, JT .
NUMERISCHE MATHEMATIK, 1993, 65 (01) :23-50
[4]   A WEIGHTED LEAST-SQUARES METHOD FOR THE BACKWARD-FORWARD HEAT-EQUATION [J].
AZIZ, AK ;
LIU, JL .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (01) :156-167
[5]   ERROR ESTIMATES FOR ADAPTIVE FINITE-ELEMENT COMPUTATIONS [J].
BABUSKA, I ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) :736-754
[6]   THE POST-PROCESSING APPROACH IN THE FINITE-ELEMENT METHOD .2. THE CALCULATION OF STRESS INTENSITY FACTORS [J].
BABUSKA, I ;
MILLER, A .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1984, 20 (06) :1111-1129
[7]   THE POST-PROCESSING APPROACH IN THE FINITE-ELEMENT METHOD .3. A POSTERIORI ERROR-ESTIMATES AND ADAPTIVE MESH SELECTION [J].
BABUSKA, I ;
MILLER, A .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1984, 20 (12) :2311-2324
[9]  
BABUSKA I, 1987, FINITE ELEM ANAL DES, V3, P341
[10]   A-POSTERIORI ERROR ESTIMATION FOR TRIANGULAR AND TETRAHEDRAL QUADRATIC ELEMENTS USING INTERIOR RESIDUALS [J].
BAEHMANN, PL ;
SHEPHARD, MS ;
FLAHERTY, JE .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1992, 34 (03) :979-996