Synchronization properties and reservoir computing capability of hexagonal spintronic oscillator arrays

被引:8
作者
Checinski, Jakub [1 ]
机构
[1] AGH Univ Sci & Technol, Dept Elect, Al Mickiewicza 30, PL-30059 Krakow, Poland
关键词
SPIN; DRIVEN;
D O I
10.1016/j.jmmm.2020.167251
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The influence of array geometry on synchronization properties of a 2-D oscillator array is investigated based on a comparison between a rectangular and a hexagonal grid. The Kuramoto model is solved for a nearest-neighbor case with periodic boundary conditions and for a small-scale, realistic coupling case with 1/r(3) decay characteristic of spintronic oscillators. In both cases, it is found that the hexagonal grid choice leads to lower synchronization threshold and higher emission power than its rectangular counterpart, which results from increased connectivity, as well as, in the realistic-coupling case, from decreased contributions of the array edges. Additionally, a more general spin-torque oscillator model including both amplitude and phase as degrees of freedom is employed for reservoir computing simulations, showing that by using hexagonal grid one can increase the short-term memory capacity but not the parity-check capacity of the system.
引用
收藏
页数:6
相关论文
共 38 条
[1]   The Kuramoto model:: A simple paradigm for synchronization phenomena [J].
Acebrón, JA ;
Bonilla, LL ;
Vicente, CJP ;
Ritort, F ;
Spigler, R .
REVIEWS OF MODERN PHYSICS, 2005, 77 (01) :137-185
[2]   Optimizing magnetodipolar interactions for synchronizing vortex based spin-torque nano-oscillators [J].
Araujo, F. Abreu ;
Belanovsky, A. D. ;
Skirdkov, P. N. ;
Zvezdin, K. A. ;
Zvezdin, A. K. ;
Locatelli, N. ;
Lebrun, R. ;
Grollier, J. ;
Cros, V. ;
de Loubens, G. ;
Klein, O. .
PHYSICAL REVIEW B, 2015, 92 (04)
[3]  
Awad AA, 2017, NAT PHYS, V13, P292, DOI [10.1038/nphys3927, 10.1038/NPHYS3927]
[4]   Spin torque oscillator frequency versus magnetic field angle: The prospect of operation beyond 65 GHz [J].
Bonetti, Stefano ;
Muduli, Pranaba ;
Mancoff, Fred ;
Akerman, Johan .
APPLIED PHYSICS LETTERS, 2009, 94 (10)
[5]   Spin-Torque and Spin-Hall Nano-Oscillators [J].
Chen, Tingsu ;
Dumas, Randy K. ;
Eklund, Anders ;
Muduli, Pranaba K. ;
Houshang, Afshin ;
Awad, Ahmad A. ;
Durrenfeld, Philipp ;
Malm, B. Gunnar ;
Rusu, Ana ;
Akerman, Johan .
PROCEEDINGS OF THE IEEE, 2016, 104 (10) :1919-1945
[6]   Terahertz Antiferromagnetic Spin Hall Nano-Oscillator [J].
Cheng, Ran ;
Xiao, Di ;
Brataas, Arne .
PHYSICAL REVIEW LETTERS, 2016, 116 (20)
[7]   Spin nano-oscillator-based wireless communication [J].
Choi, Hyun Seok ;
Kang, Sun Yool ;
Cho, Seong Jun ;
Oh, Inn-Yeal ;
Shin, Mincheol ;
Park, Hyuncheol ;
Jang, Chaun ;
Min, Byoung-Chul ;
Kim, Sang-Il ;
Park, Seung-Young ;
Park, Chul Soon .
SCIENTIFIC REPORTS, 2014, 4
[8]  
Demidov VE, 2012, NAT MATER, V11, P1028, DOI [10.1038/NMAT3459, 10.1038/nmat3459]
[9]  
Dieny B., 2019, ARXIV190810584
[10]   Synchronization in complex networks of phase oscillators: A survey [J].
Doerfler, Florian ;
Bullo, Francesco .
AUTOMATICA, 2014, 50 (06) :1539-1564