The global methane budget 2000-2012

被引:805
作者
Saunois, Marielle [1 ]
Bousquet, Philippe [1 ]
Poulter, Ben [2 ]
Peregon, Anna [1 ]
Ciais, Philippe [1 ]
Canadell, Josep G. [3 ]
Dlugokencky, Edward J. [4 ]
Etiope, Giuseppe [5 ]
Bastviken, David [6 ]
Houweling, Sander [7 ,8 ]
Janssens-Maenhout, Greet [9 ]
Tubiello, Francesco N. [10 ]
Castaldi, Simona [11 ,12 ,13 ]
Jackson, Robert B. [14 ]
Alexe, Mihai [9 ]
Arora, Vivek K. [15 ]
Beerling, David J. [16 ]
Bergamaschi, Peter [9 ]
Blake, Donald R. [17 ]
Brailsford, Gordon [18 ]
Brovkin, Victor [19 ]
Bruhwiler, Lori [4 ]
Crevoisier, Cyril [20 ]
Crill, Patrick [21 ]
Covey, Kristofer [22 ]
Curry, Charles [23 ]
Frankenberg, Christian [24 ]
Gedney, Nicola [25 ]
Hoeglund-Isaksson, Lena [26 ]
Ishizawa, Misa
Ito, Akihiko
Joos, Fortunat [27 ,28 ]
Kim, Heon-Sook
Kleinen, Thomas [19 ]
Krummel, Paul [29 ]
Lamarque, Jean-Francois [30 ]
Langenfelds, Ray [29 ]
Locatelli, Robin [1 ]
Machida, Toshinobu
Maksyutov, Shamil
McDonald, Kyle C. [31 ]
Marshall, Julia [32 ]
Melton, Joe R. [33 ]
Morino, Isamu [25 ]
Naik, Vaishali [34 ]
O'Doherty, Simon [35 ]
Parmentier, Frans-Jan W. [36 ]
Patra, Prabir K. [37 ]
Peng, Changhui [38 ]
Peng, Shushi [1 ]
机构
[1] Univ Paris Saclay, LSCE IPSL CEA CNRS UVSQ, Lab Sci Climat & Environm, F-91191 Gif Sur Yvette, France
[2] NASA, Goddard Space Flight Ctr, Biospher Sci Lab, Greenbelt, MD 20771 USA
[3] CSIRO Oceans & Atmosphere, Global Carbon Project, Canberra, ACT 2601, Australia
[4] NOAA ESRL, 325 Broadway, Boulder, CO 80305 USA
[5] Ist Nazl Geofis & Vulcanol, Sez Roma 2, Via V Murata 605, I-00143 Rome, Italy
[6] Linkoping Univ, Dept Themat Studies Environm Change, S-58183 Linkoping, Sweden
[7] SRON, Netherlands Inst Space Res, Sorbonnelaan 2, NL-3584 CA Utrecht, Netherlands
[8] Inst Marine & Atmospher Res, Sorbonnelaan 2, NL-3584 CA Utrecht, Netherlands
[9] European Commiss Joint Res Ctr, Ispra, VA, Italy
[10] Food & Agr Org United Nations FAO, Stat Div, Viale Terme Caracalla, I-00153 Rome, Italy
[11] Seconda Univ Napoli, Dipartimento Sci Ambientali Biol & Farmaceut, Via Vivaldi 43, I-81100 Caserta, Italy
[12] FEFU, Vladivostok, Russky Island, Russia
[13] Euromediterranean Ctr Climate Change, Via Augusto Imperatore 16, I-73100 Lecce, Italy
[14] Stanford Univ, Sch Earth Energy & Environm Sci, Stanford, CA 94305 USA
[15] Environm & Climate Change Canada, Div Climate Res, Canadian Ctr Climate Modelling & Anal, Victoria, BC V8W 2Y2, Canada
[16] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England
[17] Univ Calif Irvine, Dept Chem, 570 Rowland Hall, Irvine, CA 92697 USA
[18] Natl Inst Water & Atmospher Res, 301 Evans Bay Parade, Wellington, New Zealand
[19] Max Planck Inst Meteorol, Bundesstr 53, D-20146 Hamburg, Germany
[20] Ecole Polytech, LMD IPSL, Meteorol Dynam Lab, F-91120 Palaiseau, France
[21] Bolin Ctr Climate Res, Svante Arrhenius Vag 8, S-10691 Stockholm, Sweden
[22] Yale Univ, Sch Forestry & Environm Studies, New Haven, CT 06511 USA
[23] Univ Victoria, Sch Earth & Ocean Sci, POB 1700 STN CSC, Victoria, BC V8W 2Y2, Canada
[24] Jet Prop Lab, M-S 183-601,4800 Oak Grove Dr, Pasadena, CA 91109 USA
[25] Joint Ctr Hydrometeorol Res, Met Off Hadley Ctr, Maclean Bldg, Wallingford OX10 8BB, Oxon, England
[26] Int Inst Appl Syst Anal, Air Qual & Greenhouse Gases Program AIR, A-2361 Laxenburg, Austria
[27] Univ Bern, Inst Phys, Climate & Environm Phys, Sidlerstr 5, CH-3012 Bern, Switzerland
[28] Univ Bern, Oeschger Ctr Climate Change Res, Sidlerstr 5, CH-3012 Bern, Switzerland
[29] CSIRO, Oceans & Atmosphere, Aspendale, Vic 3195, Australia
[30] NCAR, POB 3000, Boulder, CO 80307 USA
[31] CUNY, Dept Earth & Atmospher Sci, New York, NY 10031 USA
[32] Max Planck Inst Biogeochem, Hans Knoll Str 10, D-07745 Jena, Germany
[33] Environm & Climate Change Canada, Div Climate Res, Victoria, BC V8W 2Y2, Canada
[34] NOAA, GFDL, 201 Forrestal Rd, Princeton, NJ 08540 USA
[35] Univ Bristol, Sch Chem, Cantocks Close, Bristol BS8 1TS, Avon, England
[36] Lund Univ, Dept Phys Geog & Ecosyst Sci, Solvegatan 12, S-22362 Lund, Sweden
[37] JAMSTEC, Dept Environm Geochem Cycle Res, Kanazawa Ku, 3173-25 Showa Machi, Yokohama, Kanagawa 2360001, Japan
[38] Univ Quebec, Dept Biol Sci, Inst Environm Sci, Montreal, PQ H3C 3P8, Canada
[39] CICERO, Pb 1129 Blindern, N-0318 Oslo, Norway
[40] Observ Paris, CNRS, LERMA, 61 Ave Observ, F-75014 Paris, France
[41] MIT, Dept Earth Atmospher & Planetary Sci, Bldg 54-1312, Cambridge, MA 02139 USA
[42] Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA
[43] Univ Hohenheim, Inst Bot, D-70593 Stuttgart, Germany
[44] JMA, Chiyoda Ku, 1-3-4 Otemachi, Tokyo 1008122, Japan
[45] Auburn Univ, Sch Forestry & Wildlife Sci, Int Ctr Climate & Global Change Res, 602 Duncan Dr, Auburn, AL 36849 USA
[46] Imperial Coll London, Blackett Lab, Space & Atmospher Phys, London SW7 2AZ, England
[47] KNMI, POB 201, NL-3730 AE De Bilt, Netherlands
[48] Vrije Univ Amsterdam, Earth & Climate Cluster, Fac Earth & Life Sci, Amsterdam, Netherlands
[49] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA
[50] Met Off Hadley Ctr, FitzRoy Rd, Exeter EX1 3PB, Devon, England
基金
加拿大自然科学与工程研究理事会; 瑞典研究理事会; 瑞士国家科学基金会; 欧洲研究理事会;
关键词
ATMOSPHERIC HYDROXYL RADICALS; CARBON ISOTOPIC COMPOSITION; GREENHOUSE-GAS EMISSIONS; PROCESS-BASED MODEL; NATURAL-GAS; TRACE GASES; TROPOSPHERIC METHANE; CLIMATE-CHANGE; INTERANNUAL VARIABILITY; WETLAND EXTENT;
D O I
10.5194/essd-8-697-2016
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The global methane (CH4) budget is becoming an increasingly important component for managing realistic pathways to mitigate climate change. This relevance, due to a shorter atmospheric lifetime and a stronger warming potential than carbon dioxide, is challenged by the still unexplained changes of atmospheric CH4 over the past decade. Emissions and concentrations of CH4 are continuing to increase, making CH4 the second most important human-induced greenhouse gas after carbon dioxide. Two major difficulties in reducing uncertainties come from the large variety of diffusive CH4 sources that overlap geographically, and from the destruction of CH4 by the very short-lived hydroxyl radical (OH). To address these difficulties, we have established a consortium of multi-disciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate research on the methane cycle, and producing regular (similar to biennial) updates of the global methane budget. This consortium includes atmospheric physicists and chemists, biogeochemists of surface and marine emissions, and socio-economists who study anthropogenic emissions. Following Kirschke et al. (2013), we propose here the first version of a living review paper that integrates results of top-down studies (exploiting atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up models, inventories and data-driven approaches (including process-based models for estimating land surface emissions and atmospheric chemistry, and inventories for anthropogenic emissions, data-driven extrapolations). For the 2003-2012 decade, global methane emissions are estimated by top-down inversions at 558 TgCH(4) yr(-1), range 540-568. About 60% of global emissions are anthropogenic (range 50-65 %). Since 2010, the bottom-up global emission inventories have been closer to methane emissions in the most carbon-intensive Representative Concentrations Pathway (RCP8.5) and higher than all other RCP scenarios. Bottom-up approaches suggest larger global emissions (736 TgCH(4) yr(-1), range 596-884) mostly because of larger natural emissions from individual sources such as inland waters, natural wetlands and geological sources. Considering the atmospheric constraints on the top-down budget, it is likely that some of the individual emissions reported by the bottom-up approaches are overestimated, leading to too large global emissions. Latitudinal data from top-down emissions indicate a predominance of tropical emissions (similar to 64% of the global budget, <30 degrees N) as compared to mid (similar to 32 %, 30-60 degrees N) and high northern latitudes (similar to 4 %, 60-90 degrees N). Top-down inversions consistently infer lower emissions in China (similar to 58 TgCH(4) yr(-1), range 51-72, -14 %) and higher emissions in Africa (86 TgCH(4) yr(-1), range 73-108, + 19 %) than bottom-up values used as prior estimates. Overall, uncertainties for anthropogenic emissions appear smaller than those from natural sources, and the uncertainties on source categories appear larger for top-down inversions than for bottom-up inventories and models. The most important source of uncertainty on the methane budget is attributable to emissions from wetland and other inland waters. We show that the wetland extent could contribute 30-40% on the estimated range for wetland emissions. Other priorities for improving the methane budget include the following: (i) the development of process-based models for inland-water emissions, (ii) the intensification of methane observations at local scale (flux measurements) to constrain bottom-up land surface models, and at regional scale (surface networks and satellites) to constrain top-down inversions, (iii) improvements in the estimation of atmospheric loss by OH, and (iv) improvements of the transport models integrated in top-down inversions. The data presented here can be downloaded from the Carbon Dioxide Information Analysis Center (http://doi.org/10.3334/CDIAC/GLOBAL_METHANE_BUDGET_2016_V1.1) and the Global Carbon Project.
引用
收藏
页码:697 / 751
页数:55
相关论文
共 361 条
[1]   Emission factors for open and domestic biomass burning for use in atmospheric models [J].
Akagi, S. K. ;
Yokelson, R. J. ;
Wiedinmyer, C. ;
Alvarado, M. J. ;
Reid, J. S. ;
Karl, T. ;
Crounse, J. D. ;
Wennberg, P. O. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (09) :4039-4072
[2]   Inverse modelling of CH4 emissions for 2010-2011 using different satellite retrieval products from GOSAT and SCIAMACHY [J].
Alexe, M. ;
Bergamaschi, P. ;
Segers, A. ;
Detmers, R. ;
Butz, A. ;
Hasekamp, O. ;
Guerlet, S. ;
Parker, R. ;
Boesch, H. ;
Frankenberg, C. ;
Scheepmaker, R. A. ;
Dlugokencky, E. ;
Sweeney, C. ;
Wofsy, S. C. ;
Kort, E. A. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2015, 15 (01) :113-133
[3]   Methane carbon isotope effects caused by atomic chlorine in the marine boundary layer: Global model results compared with Southern Hemisphere measurements [J].
Allan, W. ;
Struthers, H. ;
Lowe, D. C. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2007, 112 (D4)
[4]   Interannual variation of 13C in tropospheric methane:: Implications for a possible atomic chlorine sink in the marine boundary layer -: art. no. D11306 [J].
Allan, W ;
Lowe, DC ;
Gomez, AJ ;
Struthers, H ;
Brailsford, GW .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2005, 110 (D11) :1-8
[5]  
Allen DT, 2013, P NATL ACAD SCI USA, V110, P17768, DOI 10.1073/pnas.1304880110
[6]   Modeling methane emissions and methane inventories for cattle production systems in Mexico [J].
Alonso Castelan-Ortega, Octavio ;
Carlos Ku-Vera, Juan ;
Estrada-Flores, Julieta G. .
ATMOSFERA, 2014, 27 (02) :185-191
[7]  
Andre J.-C., 2014, METHANE VIENT IL QUE
[8]   Emission of trace gases and aerosols from biomass burning [J].
Andreae, MO ;
Merlet, P .
GLOBAL BIOGEOCHEMICAL CYCLES, 2001, 15 (04) :955-966
[9]  
Anisimov O, 2006, AMBIO, V35, P169, DOI 10.1579/0044-7447(2006)35[169:PACCTR]2.0.CO
[10]  
2