The Dark Side of Plasmonics

被引:166
|
作者
Gomez, D. E. [1 ,2 ,3 ]
Teo, Z. Q. [1 ]
Altissimo, M. [3 ]
Davis, T. J. [2 ,3 ]
Earl, S. [1 ]
Roberts, A. [1 ]
机构
[1] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia
[2] CSIRO, Mat Sci & Engn, Clayton, Vic 3168, Australia
[3] Melbourne Ctr Nanofabricat, Clayton, Vic 3168, Australia
关键词
Surface plasmons; plasmon hybridization; dark modes; plasmonic trimer; nanorods; radial polarization; NEAR-FIELD; MODES; SURFACE; RESONANCES; BRIGHT; BEAMS; NANOPARTICLES; HYBRIDIZATION; NANOANTENNAS; CHAINS;
D O I
10.1021/nl401656e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Plasmonic dark modes are pure near-field modes that can arise from the plasmon hybridization in a set of interacting nanoparticles. When compared to bright modes, dark modes have longer lifetimes due to their lack of a net dipole moment, making them attractive for a number of applications. We demonstrate the excitation and optical detection of a collective dark plasmonic mode from individual plasmonic trimers. The trimers consist of triangular arrangements of gold nanorods, and due to this symmetry, the lowest energy dark plasmonic mode can interact with radially polarized light. The experimental data presented confirm the excitation of this mode, and its assignment is supported with an electrostatic approximation wherein these dark modes are described in terms of plasmon hybridization. The strong confinement of energy in these modes and their associated near fields hold great promise for achieving strong coupling to single photon emitters.
引用
收藏
页码:3722 / 3728
页数:7
相关论文
共 50 条
  • [21] Nonclassical effects in plasmonics: An energy perspective to quantify nonclassical effects
    Yan, Wei
    Mortensen, N. Asger
    PHYSICAL REVIEW B, 2016, 93 (11)
  • [22] Active Plasmonics and Active Chiral Plasmonics through Orientation-Dependent Multipolar Interactions
    Stevenson, Peter R.
    Du, Matthew
    Cherqui, Charles
    Bourgeois, Marc R.
    Rodriguez, Kate
    Neff, Jacob R.
    Abreu, Endora
    Meiler, Ilse M.
    Tamma, Venkata Ananth
    Apkarian, Vartkess Ara
    Schatz, George C.
    Yuen-Zhou, Joel
    Shumaker-Parry, Jennifer S.
    ACS NANO, 2020, 14 (09) : 11518 - 11532
  • [23] Spin-Dependent Plasmonics Based on Interfering Topological Defects
    Shitrit, Nir
    Nechayev, Sergey
    Kleiner, Vladimir
    Hasman, Erez
    NANO LETTERS, 2012, 12 (03) : 1620 - 1623
  • [24] Plasmonics beyond the diffraction limit
    Gramotnev, Dmitri K.
    Bozhevolnyi, Sergey I.
    NATURE PHOTONICS, 2010, 4 (02) : 83 - 91
  • [25] Spatially Resolved Nonlinear Plasmonics
    Schust, Johannes
    Mangold, Florian
    Sterl, Florian
    Metz, Niklas
    Schumacher, Thorsten
    Lippitz, Markus
    Hentschel, Mario
    Giessen, Harald
    NANO LETTERS, 2023, 23 (11) : 5141 - 5147
  • [26] Rhodium Nanoparticles for Ultraviolet Plasmonics
    Watson, Anne M.
    Zhang, Xiao
    Alcaraz de la Osa, Rodrigo
    Marcos Sanz, Juan
    Gonzalez, Francisco
    Moreno, Fernando
    Finkelstein, Gleb
    Liu, Jie
    Everitt, Henry O.
    NANO LETTERS, 2015, 15 (02) : 1095 - 1100
  • [27] Comparing experiment and theory in plasmonics
    Barnes, W. L.
    JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 2009, 11 (11):
  • [28] Engineering gold alloys for plasmonics
    Nishijima, Yoshiaki
    Hashimoto, Yoshikazu
    Seniutinas, Gediminas
    Rosa, Lorenzo
    Juodkazis, Saulius
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2014, 117 (02): : 641 - 645
  • [29] Metals and Dielectrics for UV plasmonics
    Gutierrez, Y.
    Gonzalez, F.
    Saiz, J. M.
    Alcaraz de la Osa, R.
    Albella, P.
    Ortiz, D.
    Everitt, H. O.
    Moreno, F.
    NANOPHOTONICS VIII, 2021, 11345
  • [30] Plasmonics in Nanoslit for Manipulation of Light
    Chung, Taerin
    Lee, Seung-Yeol
    Yun, Hansik
    Cho, Seong-Woo
    Lim, Yongjun
    Lee, Il-Min
    Lee, Byoungho
    IEEE ACCESS, 2013, 1 : 371 - 383