On the relaxation dynamics of the Kuramoto oscillators with small inertia

被引:2
|
作者
Choi, Young-Pil [1 ]
Ha, Seung-Yeal [2 ,3 ]
Noh, Se Eun [4 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[2] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
[3] Seoul Natl Univ, Res Inst Math, Seoul 151747, South Korea
[4] Myongji Univ, Dept Math, Yongin 449728, South Korea
基金
新加坡国家研究基金会;
关键词
COUPLED OSCILLATORS; SYNCHRONIZATION; POPULATIONS; MOTION;
D O I
10.1063/1.4809943
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For the Kuramoto oscillators with small inertia, we present several quantitative estimates on the relaxation dynamics and formational structure of a phase-locked state (PLS) for some classes of initial configurations. In a super-critical regime where the coupling strength is strictly larger than the diameter of natural frequencies, we present quantitative relaxation dynamics on the collision numbers and the structure of PLS. In a critical coupling regime where the coupling strength is exactly the diameter of natural frequencies, we provide a sufficient condition for an asymptotically PLS solution. In particular, we show the existence of slow relaxation to a PLS, when there are exactly two natural frequencies. This generalizes the earlier results of Choi et al. ["Asymptotic formation and orbital stability of phase locked states for the Kuramoto model," Physica D 241, 735-754 (2012); "Complete synchronization of Kuramoto oscillators with finite inertia," Physica D 240, 32-44 (2011)] (C) 2013 AIP Publishing LLC.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Dynamics transitions in coupled Kuramoto oscillators model with heterogeneity and asymmetric coupling effects
    Chen, XinYue
    Liu, XiangDong
    Chen, Ran
    Li, Fan
    Liu, Shuai
    ARCHIVE OF APPLIED MECHANICS, 2023, 93 (03) : 1095 - 1106
  • [42] Global attractor and asymptotic dynamics in the Kuramoto model for coupled noisy phase oscillators
    Giacomin, Giambattista
    Pakdaman, Khashayar
    Pellegrin, Xavier
    NONLINEARITY, 2012, 25 (05) : 1247 - 1273
  • [43] A chaotic oscillation generator based on mixed dynamics of adaptively coupled Kuramoto oscillators
    Shchapin, D. S.
    Emelianova, A. A.
    Nekorkin, V. I.
    CHAOS SOLITONS & FRACTALS, 2023, 166
  • [44] Dynamics transitions in coupled Kuramoto oscillators model with heterogeneity and asymmetric coupling effects
    XinYue Chen
    XiangDong Liu
    Ran Chen
    Fan Li
    Shuai Liu
    Archive of Applied Mechanics, 2023, 93 : 1095 - 1106
  • [45] Dynamics of a ring of three coupled relaxation oscillators
    Bridge, J.
    Mendelowitz, L.
    Rand, R.
    Sah, S.
    Verdugo, A.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (04) : 1598 - 1608
  • [46] Hysteretic transitions in the Kuramoto model with inertia
    Olmi, Simona
    Navas, Adrian
    Boccaletti, Stefano
    Torcini, Alessandro
    PHYSICAL REVIEW E, 2014, 90 (04):
  • [47] Bifurcations and Patterns in the Kuramoto Model with Inertia
    Hayato Chiba
    Georgi S. Medvedev
    Matthew S. Mizuhara
    Journal of Nonlinear Science, 2023, 33
  • [48] Nonlinear damping effects in a simplified power grid model based on coupled Kuramoto-like oscillators with inertia
    Arinushkin, P. A.
    Vadivasova, T. E.
    CHAOS SOLITONS & FRACTALS, 2021, 152
  • [49] Bifurcations and Patterns in the Kuramoto Model with Inertia
    Chiba, Hayato
    Medvedev, Georgi S.
    Mizuhara, Matthew S.
    JOURNAL OF NONLINEAR SCIENCE, 2023, 33 (05)
  • [50] Relaxation time of the global order parameter on multiplex networks: The role of interlayer coupling in Kuramoto oscillators
    Allen-Perkins, Alfonso
    Albuquerque de Assis, Thiago
    Manuel Pastor, Juan
    Andrade, Roberto F. S.
    PHYSICAL REVIEW E, 2017, 96 (04)